UAH Archives, Special Collections, and Digital Initiatives

Browse Items (192 total)

  • Potebiomappli_042209145355.pdf

    A brief history and purpose of nondestructive methods followed by a discussion of those methods.
  • Iterguidlawsatu_080707154609.pdf

    Summary: "Based on Lawden's equation, semi-explicit,'iterative' Saturn guidance equations are derived, many were successfully flight tested on Saturn I and analyzed for the main Apollo mission and other applications applications."
  • challchancontrproc_071207105109.pdf

    The introduction states, "This paper is designed to present the Rocketdyne engine program as it applies to the Saturn launch vehicles and will apply to the Apollo program of manned flight to the moon (Fig. 1). The vehicle that will launch this flight is the Saturn V, the largest and most powerful of the Saturn family. This vehicle, 362 feet tall and 33 feet in diameter, will be capable of sending a 45-ton payload to the moon or placing a 120-ton payload in earth orbit. Five F-1 engines power the first stage of the Saturn V; five J-2 engines, the second stage; and one J-2 engine, the third stage. The thrust of the first-stage engines alone will be equivalent to 160 million horsepower. Both of these engines, the F-1 and the J-2, were designed at, and are currently being produced by Rocketdyne."
  • Casecomp_091907132002.pdf

    "The Case for Compatibility" is a paper by Robert L. Smith, Jr., who worked in Quality and Reliability Assurance Laboratory at George C. Marshall Space Flight Center. The summary states, "Ever since the use of missiles and space launch vehicles began, questions have existed in every program regarding the similarity between upstream (e.g., manufacturing, static firing ) and launch site checkout equipment. Programs have existed which utilized nearly identical equipment for both uses; other programs have existed in which any resemblance of the equipment was probably coincidental. Many factors have entered the final decisions, not the least of which were economic and schedule considerations, and, in some instances, the organizational structure of the developer."
  • spc_stnv_000129.pdf

    By J. Reynolds Duncan, Jr., Aerospace Engineer, NASA Marshall Space Flight Center, Huntsville, Alabama. AIAA 7th Aerospace Sciences Meeting, New York City, New York, January 20 - 22, 1969.
  • telesystforsatus-istagdeve_032107081755.pdf

    The telemetry system used on the Saturn S-I stage for the transmission of vehicle test data is described. Multiplex and modulationtechniques such as PAM/FM/FM, SS/FM and PGM are used in the system. The diverse data requirements for developing the eight-engineliquid-fueled stage necessitated the use of a combination of severalmodulation techniques to efficiently handle the data. A cursory comparisonis made of the merits of each technique. Physical and electricalrequirements and characteristics of the system are outlined.
  • tecinfsumapollo9.pdf

    The document presents a brief and concise description of the Apollo 9 Saturn Space Vehicle.
  • TechinfosummApol_051310121144.pdf

    The document presents a brief and concise description of the AS-505 Apollo Saturn Space Vehicle. Where necessary, for clarification, additional related information has been included.
  • spc_nick_000326_000326.pdf

    Written by John F. Roehm, this report covers a summary of reports of Colonel John C. Nickerson, Jr.'s efficiency from his former Battery Executive Officer and regimental basketball boach.
  • statsmodforsaturn_012508122337.pdf

    This report presents the logic leading to a mathematical expression for mission availability. Mission availability is treated as the probability that the cumulative downtime occurring during a mission of given length will be less than the time constraint. This is opposed to more general approaches such as steady state or instantaneous availability or operating time versus real time. We intend to present a practical and usable mathematical model by deduction and demonstration. The development is based on exponentially distributed downtimes. Experience shows that certain systems follow exponential downtime distributions except near zero. This error is often so small that it may be neglected. A future report will present a downtime distribution which will account for this small error.
  • Sperrandmontprog_092910151001.pdf

    The following pages contain reports for each of the individual contract appendices covering technical progress and accomplishments, related problems, and staffing progress. The report of manhours expended against each appendix by schedule order is being submitted as a part of the financial management report.
  • sdsp_skyl_000054_001.pdf
  • sdsp_skyl_000063.pdf

    This is a series of interviews with the crew of Skylab 4. The interviews focus on the onboard systems and equipment.
  • Satudraf_112508121151.pdf

    Report on the history of the Saturn program.
  • satsivcryoweighsyst_072007101249.pdf

    During cryogenic weigh system operation, hydrogen when combined with oxygen can create an unsafe condition. Therefore the concentration of the residual oxygen and hydrogen from leaks in the cryogenic weigh environmental bags must be known at all times during the cryogenic weigh. Hydrogen and oxygen detectors will provide the optimum method for maintaining safe conditions. Hydrogen properties and safe mixtures are reviewed. The method selected to analyze the oxygen content is discussed. The selection, development, and testing of a hydrogen detector system is examined.
  • satsivcryoweighsyst-II_072007103745.pdf

    Two basic methods for mass determination are: (1) direct measurement, (2) volume and density determination. Both methods or variations have been used to determine space vehicle propellant mass with varying degrees of success. Stringent propellant loading accuracy requirements of k0.5 percent for the Saturn S-IV Stage have led to the development of a Cryogenic Calibration Weigh System. The method employs accurate electronic force transducers and measuring systems as the standard and experimental weighings have verified achievement of better than the required accuracy.
  • satsivcryoweighsyst-I_072007112534.pdf

    In order to achieve maximum vehicle efficiency, it is essential that the vehicle propellants be loaded to desired values and that these propellants approach simultaneous depletion at the end of powered flight. To accomplish precise loading and assure minimum residuals, a highly accurate and repeatable, vehicle located, propellant management (PM) or propellant utilization (PU) system must be used. As the ability to load propellants to predetermined values depends directly on the ability of the system to accurately sense the propellant masses, it is essential that the system be calibrated with respect to propellant mass under conditions resembling those to be experienced during final loading and powered flight. The use of a cryogenic weight system will reduce the unknown factors in capacitance sensor element shaping, tank geometry, and propellant properties to a degree which will permit the determination of propellant masses to with .025%.
  • spc_stnv_000056.pdf

    Paper given at the AIAA Guidance and Control Conference, August 12-14, 1963, Massachusetts Institute of Technology, Cambridge, Massachusetts.
  • SatuIWorkExpe_062508160355.pdf

    April 1, 1968.; Stamped on first page is From the Archives of Frederick I. Ordway, III.
  • satuIfirsgene_062007153848.pdf

    A basic description of the Saturn rockets alongside diagrams for context.
  • Markinterepo_012609120629.pdf
  • saterecosyst_030607104911.pdf

    Report focusing on the problems of the satalite recovery system and the possible solutions for those problems.
  • sdsp_skyl_000068_001.pdf
  • S1VBsathigh_032608091902.pdf

    The development of carrier rockets For manned space missions has been one of the major activities in the aerospace field during the past decade. The early space efforts were made possible by the existence of large ballistics missiles. It soon became obvious that the delivery of weapons and the launch of large spacecraft could not be combined into one operational system in an efficient way; therefore, a family of spacecraft boosters had to be created.
  • rockexheffects_071707095315.pdf

    Presented by Olen P. Ely, National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Alabama and R. W. Hockenberger, International Business Machines. Paper that explores the effects of rocket-engine exhaust on radio-signals.
  • spc_mccg_000025_000059.pdf
  • RepototheCong1965.pdf

    A report to Congress from White House regarding the accomplishments of NASA.
  • pdf_013108114114.pdf

    Presented to ACHEMA Congress and European Meeting of Chemical Engineering 1967, Frankfurt, Germany, June 21, 1967 by Dr. Eberhard Rees.; Includes slide numbers.
  • Repoofadhoc_120208114918.pdf

    It is the purpose of this report to clarify the goals, the missions and the costs of this effort in the forseeable future, particularly with regard to the man-in-space program
  • reportfrmmissipi_012508130206.pdf

    Report detailing the progress NASA's Mississippi test facility has made testing the Apollo-Saturn rocket.
  • projmgrrpt_081707162030.pdf

    Report detailing the costs of materials and contracts.
  • proincrypumdesforspaapp_031808115456.pdf

    Report detailing the problems surrounding cryogenic pump design for space travel and missions.
  • prelstudofanunmalunasoftlandvehi(scieappli)_062507093930.pdf

    Report to the National Aeronautics and Space Administration Working Group on Lunar and Planetary Surfaces.
  • Nextdecainspac_092910155610.pdf

    Summary of President's Advisory Committee report to the President's Space Task Group.
  • Pogoanal.pdf

    Report that contians images of graphs, photographs and diagrams.
  • Paylintespacexpe_092607134251.pdf

    Space experimentation requires an increasingly complex planning and systems engineering effort to meet the demand for highest precision and reliability of all measurements and observations. A companion paper discusses the interfaces between the scientific/technical areas of space experimentation and the instruments, subsystems and support systems within the spacecraft. This paper deals with the organization and the procedures which are needed to perform the difficult payload integration process for space experimentation. In the course of this process it is necessary to define the experiments completely, to describe all instruments in terms of engineering specifications, to investigate the commonality of equipment, to group the experiments into mission compatible payloads, to specify acceptable loads on all subsystems and astronauts (when present) and to plan for all contingencies during the flight.
  • orbreslab_071807093833.pdf

    This report presents the results of the study of Orbiting Research Laboratory and Logistic Spacecraft Checkout Requirements as they relate to prelaunch operations at MILA. The study was performed jointly by the Florida Division and the Systems Research and Analysis Division of TRW Space Technology Laboratories for NASA under the terms of contract NAS10-1076.
  • nuclengdescons_051407083155.pdf

    The intent of this paper is to examine the static test countdown organization and discuss the need for a systematic method to organize a countdown.
  • NondesTest_021508092714.pdf

    Presented at the Western Metals Congress, Los Angeles, California, 15 March 1967.; Archive copy is a photocopy.; ABSTRACT: This report describes the various nondestructive test methods employed to evaluate materials and processes used in the manufacture of large liquid propellant rocket engines at the Rocketdyne Division of North American Aviation, Inc. The contents of the paper were purposely oriented for an audience of aerospace, design and materials engineers. A brief description of liquid propellant rocket engine reliability is presented. The relationship of standards and specifications to nondestructive testing is discussed and various test methods are described along with a discussion of their applications and limitations. The sequence of events leading up to the use of nondestructive testing in production inspection is presented. Finally, the organization of labor directly related to nondestructive testing is given.
  • sdsp_skyl_000066_001.pdf
Output Formats

atom, csv, dc-rdf, dcmes-xml, json, omeka-xml, rss2