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0

DEFINITION OF SYMBOLS
Definition

distance from the center of the spherical attracting
body

ge re2
earth radius
sea level gravitation

thrust acceleration
velocity in the local horizontal direction

direction of the thrust vector against the local
horizontal

ge; exhaust velocity

sp
A
Eg = —3; burnup time
mo ag

time at which desired end conditions are met

time from current state to satisfaction of end conditions

values at desired end condition

values at current state
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Aero-Astrodynamics Internal Note 23-64

A COMPARISON OF AN MIT EXPLICIT GUIDANCE PRINCIPLE
WITH MSFC ITERATIVE GUIDANCE

&7

SUMMARY

Although they are not precisely equivalent, the MIT guidance principle
and the MSFC iterative guidance have many similarities. Both schemes steer
toward a specified end point. The MIT scheme uses thrust to cancel out
the effective gravity, a nonlinear term, which may be inefficient in cer-
tain cases., The MSFC scheme is more closely connected with calculus of
variations and optimization theory in a reasonable degree of approximation,
For many missions, the performance differences are probably insignificant,
The MIT scheme is difficult to generalize to multiple stage operation
whereas the MSFC scheme has demonstrated its effectiveness in multi-stage
applications numerous times. In fact, the MSFC scheme has demonstrated
its capability in all the situations for which the MIT guidance scheme is
proposed, The MIT scheme is simple and economical regarding in-flight
computer requirements and has merit where guidance over only a single
stage is required. Some modification of the time-to-go prediction is
desirable to eliminate an iteration process in flight., Detailed numerical
studies on the MIT scheme will be reported on when they are available.
Actual differences in computer requirements between single stage MSFC
iterative guidance and MIT guidance are not significant,

I, INTRODUCTION

A great deal of work has been done in this country since 1961 in
the area of explicit guidance for space vehicles. MIT has made certain
studies in this field for use in Service Module and LEM applications.
MSFC has also worked in the explicit guidance field during these years,
the results being known as iterative guidance, a guidance mechanization
which has been exceedingly useful in ascent, lunar transit, and lunar
landing applications, MSFC iterative guidance has arisen from trajectory
studies in calculus of variations and from the need for a simple explicit
guidance formulation which would be adaptable to all possible perturbations
and be capable of a high payload performance. The purpose of this report
is to explore the principles underlying MIT guidance assumptions and to
compare them with the assumptions and results of the theoretical optimum
obtained by calculus of variations., Some comparison is made also with
regard to ease of implementation.
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II, PITCH PLANE GUIDANCE PRINCIPLE

Equations of motion formulated by MIT in a polar coordinate system

are
V2
.e = w + e 3 1a
o -u-rz T tapsina (1a)
Wy
V = - 1b
V6 — + a, cos Q. (1b)

C
The thrust acceleration is defined as aq in direction (r against the
local horizontal, V, is the component o¥ velocity in the local horizontal
direction, and r is the distance from the spherical attracting body.
Values for

ty = £(t,) (2a)
°

ro = r(to) _ , (2b)

Voo = Vo(t) | (2¢)

at any instant of time, ty, are provided by the inertial measuring unit’

‘after some transformation. Desired end conditions,

#(T) = £, (3a)

r() = 1, (3b)

I
H

are those specified by the mission objective, i.e., the attainment of a
circular orbit at some specified altitude as an example, The time T is
that time when the satisfaction of these desired end conditions takes

place. The problem is to find q(t) in a manner permitting satisfaction

of the end conditions and permitting an efficient use of fuel.
<
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Now
t
t(t) = t, + f ¥(s) ds
to
T
Ity - Ty = f #(t) dt
t
o
Tt
rD-ro-rngo= f [f ¥(s) ds}dt
to [+]
where
Tgo =T~ t,

(4)

€))

(6)

)

and where ¥(t) is constrained by the necessity to meet the desired end
conditions in an efficient way. It is clear that ¥ needs two degrees
of freedom to satisfy the two end conditions r(T) and £(T).

Assume that

¥(t) = Ap(t) + Bq(t)

(8)

where optimization considerations can be used in the selection of p(t)
and q(t) and end conditions determined by the choice of A and B.

Integrating equation (7) gives

T T
i:D-x':o=Af p(t)dt+qu(t)dt

to to

T

(9)

T t

t
iD-ro-fngo=Af[f p(s)ds:[dt+Bf[f q(s)ds:’dt.

to to

to tg

(10)



Thus,

where the coefficients fi’ are defined by the appropriate integrals in
equations (9) and (10) and are functions of Tgo. Assuming the fij and
Tgo are known, A and B may be found in a linear fashion.

A=ejq [iD - £,] + eyp [rp - (rg + £, Tgo) (13a)
B = ep [fD - fol + eon [rD - (r0 + i, Tgo)] (13b)
with
en=iz-2; 912"‘5325 321="f'215 e22='f'f'
and

A= f3; £15 - £15 £o3.

The reason for the assumption of equation (8) is apparent: It permits
equations (9) and (10) to be solved for A and B in a linear fashion, if
Tgo is known. The prediction of Tgo will be discussed later.

Once A and B are computed, the thrust direction (¢ may be computed
from the combination of equations (8) and (la) solved for .

V2
sin ¢ = ai Ap(t) + Bq(t) =~ [}x% + -%]} (14)
T



where ap, r, and V, are obtained from the navigation system. The com-
putation is recycled as time progresses to generate new attitude com-
mands until Tgo becomes small, since as Tgo — 0 the determinant A — 0.
The MIT scheme provides only thrust angle, but not angular rate, as

does the iterative guidance scheme. Also the MIT principle requires the
arc sine to be evaluated to get the thrust direction. Finally ¢ must be
transformed into the platform coordinate system.

ITI. SPECIFIC GUIDANCE SCHEMES

Several distinct guidance schemes have arisen from MIT work
depending on the assumed form of p(t) and q(t) in equation (8). The
simplest scheme and the one proposed for certain LEM operations assumes

p(t) = 15 q(t) =T - t.

Hence,

¥=A+B(T - t) (15)

is assumed. This assumption cannot be justified on any basis other than
simplicity. The assumption that ¥ is linear over time is not justified
from the standpoint of optimization. The function ¥, taken from a
typical Saturn IB second stage trajectory to 105 n. mi. orbit and com-
puted using calculus of variations, is shown in Figure 1. It is con-
ceivable that a scheme based on this primitive assumption can lead to
reasonably good payload performance since A and B are repetitively
evaluated and not held constant over flight time. Hence, although
linearity is assumed, it is not forced.

This specific scheme has been called E* guidance and results in
exceedingly simple guidance equations.

2 1
£11= Tyo3 fi2 = 5% £z = £2 f =B A=y TS (16)



sin

last computation of C and D,

T

= -V, In < - -%_2 3, correspond to
fij of previous E*
scheme,

= all T = Ve Tgo

1
= = 2
4313 @p2 = 830 dp;
aoso a _ a . _a

byg [rD - ro] +b,5 [rD (r0 + t Tgo)]

boy [rD - ro] + bos [rD - (rD + 5 Tgo)]

1 Vo
o= - = {- L +-—9] + C + Dt
aT r r

(21a)

(21b)

(21l¢)

(214)

(2le)

(21£)

(22a)

(22b)

(23)

where r, Vg at the current state are used and t is measured from the
MIT has stated that this version of the
guidance scheme has given better performance results than that obtained
with a steepest descent trajectory optimization program,

MIT has evaluated schemes in between the assumptions of equations

(15) and

(20). For example, in equation (20) one may assume

¥ = CaT + DaT (T - t)



and expand

\'
e

Tt

AT=

in a Taylor series of two or three terms in powers of T - t. 1In this
way, the logarithm in equations (21) is eliminated and the corresponding
coefficients to equations (21) or (16) become polynomials in Tgo.
Details of this approach are not presented, for brevity, and thée series
assumed is poorly convergent. There are several versions of the basic
MIT guidance principle presented here as far as implementation is con-
cerned, all of which are similar in that an assumption primarily for
convenience is made which allows the ¥ differential equation to be
linearized and treated in closed form, so that the boundary value
problem can be solved. The approach toward MSFC iterative guidance is
directly suggested by calculus of variations and is not equivalent to
the assumptions of MIT. For example, the assumption about thrust direc-
tion in equation (18) cannot be justified by any application of calculus
of variations or optimization theory. Since optima are rather flat,
performance losses for reasonable missions may be minor.

IV, OPTIMIZATION CONSIDERATIONS

To compare the MSFC iterative guidance assumptions with MIT scheme
assumptions, it is necessary to apply calculus of variations to the
problem as formulated in the polar coordinate system by MIT. Applying
calculus of variations to minimize fuel consumption to this set of
equations results in the following set of equations which are to be
solved for the optimum thrust direction o

tan @ = As/Ag; i; = A1l i4 = Az

IV 4+ 3, V.1 =V AL sy V7T N EV
: 8 0
-7\1"'{t . r29 : l}=7\3[-;%+—z]-—-;§—




This set of equations is too complex to get a solution in closed form
without making simplifying assumptions, The flat earth solution comes
out easily by neglecting all terms involving division by r or r2 giving
the set

Hence,

at + b
tan ¢ = —_—>

the familiar flat earth solution for unconstrained range and having two
essential constants.

Some attempts will be made to justify the MIT approach from optimiza-
tion considerations., If the flat earth solution is assumed to determine
sin ¢ as time linear for the optimum thrust direction rather than the
tangent as is true for small angles, then sin ¢ = a + bt may be assumed.
This assumption renders the vertical equation of motion (la) to the
form

2
= S S ¢
r aT(a + bt) - + - -

A solution in closed form is still not possible because of the non-
linearity introduced by the gravitation and centrifugal terms. What
MIT has done to get a closed solution may be considered in two ways.

1. 1Ignore or neglect the effective gravity term

V2
Er R

which anyway approaches zero as circular orbit is approached., Thus,
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the differential equation reduces to the form ¥ = ap(a + bt), which

may be integrated in closed form assuming constant thrust and mass flow.
The coefficients a and b may be determined linearly from specified end
conditions on r and © if the remaining time is known.

2. Define

V2
sin @ = - (ﬁ% + :?)/aT + a + bt. (24)

The result is the same as above. It will be noted that ¢ is made up of
two parts. The first part uses thrust to cancel or null the effective
gravity term, an assumption leading to inefficient use of thrust for
velocities much below orbital, the second having two degrees of freedom
for the satisfaction of the two desired end conditions.

Although MIT describes their guidance principle as an optimizing
guidance law, this can only be verified numerically in certain well
chosen cases, as it seems to be (see Figure 2) for the Saturn IB tra-
jectory example. A clear connection with optimization in theory has not
been discovered unless the effects of significant forces are neglected.
Rather, the assumptions of MIT are those of convenience in solving the
boundary value problem. Since optima are rather flat, good performance
can result in specific cases. MIT's basis for optimization is in select-
ing the proper forms for p(t) and q(t) in equation (8) where various
functions of time have been considered. Calculus of variations does not
determine p and q directly; it determines the control variable . The
form assumed for equation (8) is not suggested by optimization theory
without neglecting significant forces, but rather by the desire to make
a linear boundary value problem which can be solved easily. Perhaps the
multiple errors in applying the flat earth optimum solution to the MIT
formulation are of a compensating nature.

The iterative scheme, on the other hand, operates in a coordinate
system assumed inertial at any instant where equations of motion are
simpler. The flat earth solution is simplified to tan X = X = a + bt,
thus, providing directly thrust angular rate as well as thrust angle.

The iterative scheme fully accounts for the influence of gravitation in
average over the flight the vehicle will subsequently experience. Thus,

a closer connection with calculus of variations and optimization in some
sensible degree of approximation may be established for the MSFC iterative
guidance scheme than for the MIT principle. The MIT scheme seems to be
based more on assumptions of convenience, although it shares many similar-
ities with the MSFC scheme,
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Figure } depicts the optimum thrust direction X versus time on
the Saturn IB calculus of variation trajectory computed over a spherical
carth. The linearity of this function is obvious as is assumed by the
iterative scheme. Also shown is (; against the local vertical on the
optimized trajectory. It is noted that no discontinuity is present at

161 seconds, LES jettison.

V. MULTI-STAGE CONSIDERATIONS

Other possible differences between the iterative and the MIT
scheme become apparent when generalization to multiple stages is con~
templated. Studies in calculus of variations have shown that both X
and % are continuous at staging on optimized trajectories. The basic
assumption of the iterative scheme, X = a + bt, easily adheres to this
principle in multistage application. It is clear that, for the MIT
scheme, ¢ should be continuous at staging for optimization, where the )
better performing version, o is defined by equation (23). It is not
casy to preserve the continuity of ¢ since the coefficients of equa-~
tion (22) are generally discontinuous at staging, as is ajp. It is to
be expected that the MIT scheme is difficult to generalize to multiple
stages in a way which preserves good performance optimization.* MIT
guidance principles have been published for only a single stage. The
iterative scheme, however, has been devised for and has been successfully
demonstrated in multistage application where it has duplicated the results
of calculus of variation computations to a close degree.

Vi, TIME-TO-GO ESTIMATION

Time to go until the proper end condition Vgp is reached is deter-

mined by consideration of the differential equation (16), J /b
. fVe
Ve=-—r—-+aTcos o .

* Intermediate end points may be used at the end of each stage
destroying the adaptive nature of the scheme,.




Am (g - E] - [rp -G+ 2T )]

o [rD - (rD + fo Tgo)]

and

. va
in o = - ok 8
sn,noz—aT{A+BTgo [ 1:2+ r:l}.

For better performance, MIT chooses

v

with V_ =ge I

p(t) = aT = T -t e

sp’
and

q(t) = aT « €.
Thus, it is assumed that

¥ = CaT + DaT L

(17a)

(17b)

(18)

(19a)

(19b)

(20)

characterizes optimum trajectories. The assumption is that ¥/AT is
time linear. This function for the Saturn IB optimized trajectory is
shown in Figure 2. The linearity is quite good over the single stage
except for the discontinuity at 161 seconds caused by LES jettison.
Integrations called for in equations (9) and (10) may be carried out

in closed form giving the steering equations.
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A crude solution may be obtained by assuming the first term
negligible since it goes to zero at circular orbit and assume ( small
s0 cos ¢ ~ 1. Hence, an approximation may be obtained from

T
. - - A
Vep = Voo vV, In (1 & > (25)

which can be solved for Tgo,

-V
i, "D " "g0\]
Tgo = 7T {1 - exp l: - <V Ve >:l} . (26)

This equation gives an approximation of Tgo with an initial error of
about 2 percent which goes to zero as the end condition is approached
on the Saturn IB trajectory selected for examination. It seems this
simple approach is worthy of investigation,

MIT has presented a different approach requiring an undesirable
iteration in flight. »

Equation (16) is rewritten as / A

fVo
Ve = a; + [aT (cos ¢ - 1) - -;—] .

Integrating both sides between 0 and t gives

t
\'4
Ve(t) - VG(O) = f = € _ dt + AVL (27a)

-t
o
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t
Ve(t) - Ve(°) ==V In (1 -2+ 4V, (27b)

where AVp, represents the integral of the acceleration terms in brackets.
If the minor AVy term is neglected, then

Afer

5 (28)
e

Vv (t) - V _ (o)
LeXp = [ < s ] =1-

is a simple linear approximation to the relationship between the
velocities at any later time t. If equation (27) is evaluated at Tgos

when desired end conditions are satisfied and solved for Tgo, then
V.=V __+4AV_)
= _ oD go oL
Tgo T {} exp [ Ve ]}- (29)

results. Everything in equation (29) is known from engine character-
istics except AV and Tgo. It is necessary to predict or to guess at
AVy,. For this purpose a function analogous to equation (28) is defined
for expansion in Taylor's series.

v () -v_1
H(t) = exp {} e v go }-. (30)

e

The simplified equation (28) shows that this function principally is
linear in time and therefore should be capable of a simple truncated
Taylor expansion,

H(E) = Ho + Ho(t = to) + 5 (- £)2+, ... . (31)
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The function H is used to predict Vg at Tgo after a guess has been made
for the value AVy, and Tgo is computed by equation (29). 1If

=V (T
Voo = Vo(Tgo)

is not the desired value, then AV}, must be incremented and a new guess,
and a new T,  obtained. The process is repeated until a satisfactory
degree of convergence on Vgp is obtained. Once convergence is obtained
and T,, computed, the steering equations for that computation cycle may
be evaluated. Objections to this process may be raised on two grounds,
One is a general objection to iterative processes in flight. Another
is that the expansion (31) requires ¢ in H and higher derivatives of
angle of attack or of Ve which are complicated and perhaps difficult to
obtain in flight,

The recourse for a non-iterative T,, determination is to use the
simplified equation (26) alone or with a simple single~step correction
process. The defect of equation (26) is that it does not consider the
AV, term, but assumes AVy, = 0. Define the bracketed acceleration term

. fVe aTo? fVe
ANL = aT (cos ¢ = 1) - T Tt T (32)

which is quite nonlinear over the trajectory. A crude numerical inte=-
gration of AVy using the value of A&L at two points, the current time
and the desired end condition, can be attempted where the end conditions
are obtained from the desired orbit. If injection is into circular
orbit, ¥ on the orbit is zero and ¢ terminal is zero; hence, AV, = 0%
Time to go obtained from equation (26), and the associated ¢ will be
called preliminary values, The following outline defines a single step
improvement process:

Z. Compute TgoP from equation (26)
2. Compute op from steering equations
3. Compute AV, at the current time

4, Compute AVp = 1/2 TgoP [A&Lo + A&LD] with A&LD =0

5. Convert AV, to burning time with the ideal velocity equation.
Since AVy, is small compared with V., the approximation

T AV
_ L
AIgo Ve
can be used.

(33)

* This assumption is unrealistic, however, it furnishes a partial’
correction of Tgg.
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Tgo = Tgop + A Tgo (34)

6. The change in ¢ corresponding to A&go:

Asin =D Amgo' (35)

sing=singp + Asin Q. (36)

Thus, improved numerical values can be obtained in a single-step
process without involving iteration in flight. For injection into
moderately elliptical orbits, ¥ at injection on the orbit is small and
the process may still suffice. For injection into highly eccentric
orbits, a reasonable value for A&LD may be preset from a nominal trajec-
tory. Since only a correction process is being described, a high
accuracy is not required; also, any errors in Tgo prediction go to zero
as the remaining time reduces., As an alternate process, one may replace
step 4 with

AyL =k Tgop AVLo’

where numerical studies can be used to determine a good value for k which
may be held constant over flight time,

MIT has made a strong point that the time-to-go iteration process
they have proposed does not require the evaluation of the exponential
function. Some RAND polynomials are given in Appendix A which shows
that the evaluation of transcendental functions can be accomplished with
good accuracy using a minimum of digital computer storage without requir-
ing lengthy series expansions. Since the guidance scheme is a null seek-
ing device, a high accuracy is not required.
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VII, GUIDANCE EQUATIONS ARRANGED FOR COMPUTATION

It is assumed that the IMU system provides true position and
velocity x, ¥, X, ¥ in a rectangular coordinate system oriented in the
usual manner relative to the launch site, Values at the current state
of flight are indicated by subscript O and by subscript D at the desired
terminal state. It is also assumed that IMU and associated digital com-
puter system provide the total engine acceleration a,. Equations for
the pitch plane guidance of a single stage in vacuum follow.

It is necessary to transform rectangular coordinate information to
the polar system used by MIT. The equations of transformation are

r2 = (re + y)2 + x2; re = earth radius

) X re +
sin ¢ = 75 cos (p=—1:—z

I =%Xxging+ ¥ cos ¢

Ve =X cos g - ¥y sin ¢
= -1 s
P tan Te + y.

The velocity

v2=)'<2+}',2

may be needed in the vicinity of cutoff if cutoff is based on velocity;

otherwise, cutoff can be computed from Tgo - 0.

Once a thrust direction ¢ is obtained relative to the local hori-
zontal, it is necessary to transform to the platform horizontal reference

X=a-(P-
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Simplified Time-To-Go

The inputs are V

oD’ Veo’ ape
) D v 0 Ve
oo oo [ (R T

W

with Vo nominal.

Steering command equations follow for the better performing scheme:

The inputs are T Tos i'D,‘i' , T , a

o’ "go’ T’
Too

d12 = 3127 = V, T,
dp1 = - a2t ag; I,

- 1 2
322 = azl‘r - E Ve Tgo
A=ajz; agy - a;papg;

= 222, = aiz. = aza. = 2
by =755 bia = "‘ia: b21"“i‘1: bzg"“f‘
C=Dbyy [rD - ro] + b,s [rD -r -t Tgo
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V2
2
sina=-—[:--g—-+}-ﬂ]+c+Dt. 37

a = sin~t (sin @).

Stop computation of ¢ and hold constant when Tgo becomes small,

The computation is arranged in a major computing cycle and a minor
cycle. A major cycle involves the entire set of equations and determina-
tion of C and D. The minor cycle updates ¢ from equation (37) using
previously determined C and D. 1In equation (37), t is the time elapsed
since the last determination of C and D.

VIII. CONCLUSIONS

At this point, some conclusions may be drawn in comparing the MIT
guidance principle with the MSFC iterative guidance.

a. The MIT scheme uses thrust to cancel out the effective
gravity term enabling integration of the ¥ equation. This is an inef-
ficient use of thrust for velocities much different from orbital. The
iterative guidance scheme, on the other hand, does not neglect or com-
pensate significant forces with thrust for the sake of linearity; rather,
significant forces are taken into account by the scheme, and linearity

is obtained by other means.

b. The iterative guidance scheme is a natural outgrowth of
the calculus of variation solution over a flat earth adjusted to take
into account the variation of gravity over a spherical earth. The MIT
principle cannot be connected with optimization theory in any sensible
degree of approximation analytically. Since optima are not sharp, it
is likely that the MIT principle can deviate from optimum by insignificant
amounts in some specific cases.

c., It is not clear how to generalize the MIT principle to
multistage application preserving the continuity considerations which
must hold at staging on optimized trajectories. The iterative guidance
scheme is based on principles derived from calculus of variations which
are readily extended to multiple stages as has been demonstrated in the
past., Intermediate and points at the end of each stage may be used for
the MIT scheme; however, these tend to destroy the adaptive nature of
the scheme and are difficult to select so that strong control discon-
tinuities are not introduced at staging. The MIT scheme deserves
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consideration in single stage applications where computation in flight
must be minimized, and for specific missions where its performance
characteristics are satisfactory. However, MSFC iterative guidance
computer requirements are also moderate.

d. The functions to be performed by MIT guidance equipment
and schemes include service module braking into lunar orbit, LEM descent
and ascent, and possible launch vehicle backup in the event of primary
guidance failure. The MSFC iterative guidance scheme has demonstrated
its ability in all these applications, even those applications over
multiple stages.

e. The MIT scheme provides only thrust direction and not
angular rate also, as does the iterative guidance scheme. This either
requires additional computation to provide angular rate for the updating
of ¢ in between major computing cycles or occurrence of the minor com-
puting cycles at small intervals requiring the arc sine evaluation each
time, The time-to-go estimation as proposed by MIT requires an undesir-
able iteration in flight, unless the simplification discussed in this
report or something similar is adopted.

f. Stability of any guidance scheme is an important considera-
tion and is primarily a function of thrust over weight ratio, Stability
has not been carefully investigated at this time, however, preliminary
investigations point to a possible instability problem with the MIT
scheme to a greater extent than is present for the iterative scheme.
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APPENDIX A

RAND POLYNOMIALS FOR THE GENERATION OF TRANS CENDENTAL FUNCTIONS

o

Reference: Approximations for Digital Computers, Hastings, Princeton
University Press, 1955.

Polynomial curve fits for several of the transcendental functions
involved together with the range of independent variable and maximum
error taken from the reference are given. The error is oscillatory in
nature and is zero at several points over the range, the number of
zeroes depending on the degree of the approximating expression.

Uy

sin"'1x=§-~}1-x o X(x) 0sx=s1l

i

X(x) = 1.5707228 - ,2121144 x + .0742610x2 - ,0187293x>

error < 7 x 10”5 radians ~ .004°

-X _ 1
{1 + .2507213x + .0292732x2 + .0038278x3] 4

e

error < 3 x 10-4

1n(l + x) = .9974442 - .4712839x2 + ,2256685x° - .0587527x%

0=sxs1l error < 7 x 1075,

Formulas of greater accuracy can be found in the reference,







23

APPENDIX B
PERFORMANCE COMPARISON OF MIT SCHEME WITH CALCULUS OF VARIATIONS

The Saturn IB trajectory selected for comparison has been run
starting just after LES jettison time at 161 seconds using the MIT
guidance principle with simplified time-to-go prediction. Beginning and
end conditions are the same as those used on a comparable calculus of
variations run., The calculus of variation trajectory run exhibited
S pounds greater payload into the 105-mile orbit. Position and velocity
errors at cutoff on the MIT run were negligible. This would be true of
any recasonably perturbed trajectories since the MIT scheme is closed
around the end point. Figure 4 shows the deviation of the MIT angle X
against that obtained with the calculus of variations trajectory run.
The comparison has been made using the same type of numerical integra-
tion and integration step size in both cases. This example seems to
indicate that the multiple errors of assumption in the MIT approach are
compensatory in nature.

MIT runs have been made on the ASI computer, Mr. Hollis Arban
programmer.,
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