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INTRODUCTION

The propulsion systems of rockets using liquid oxygen and, more
recently, the stages of Centaur and the Saturn moon rocket burning
liquid oxygen and hydrogen have drastically increased the consumption
of these cryogens. Their high propulsive efficiencies have caused these
exotic liquids to be abundantly produced on an industrial scale., Develop-
ment of the V-2 Rocket during World Waxr Il increased liquid oxygen
production approximately tenfold. Figure 1 shows a greater jump in
ligquid hydrogen usage during the 1950's when liquid hydrogen rocket
engine developmént started., Cryogen usage in rocket propulsion
created many new techniques and deeply stimulated many fields of
cryogenic technology.

Cryogenic technology of rocket engine and stage development is
broad, The principal systems and subsystems related to cryogen usage
in rocketry are illustrated in Figure 2. This paper emphasizes cryo-
genic technology in stage development. The impact of cryogens on stage

configuration is simply illustrated in Figure 3.
PROPELLANT FEED SYSTEM

Cryo-propellants of proper quality must be fed to rocket engines
for adequatec performance, For that purpose propellant circulation

systems and local subcooling techniques provide tightly controlled
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propellant inlet temperatures during the rocket engine start transient.
Tank pressurization provides steady state pump inlet pressures for off-
setting pressurec losses, propellant temperature rise, etc, Cryogenic
aspects of terminal drainage of temperature-stratified propellants,
internal tank thermodynamics of pressurants, and localized propellant
chill are reviewed as related to space technology.
Cryo-Propellant Stratification

Heat flux across a propellant tank wall establishes boundary layer
flow along the internal wall; heated fluid collects near the liquid surface
and an axial temperature profile develops (Figure 4). Stratified propel-
lants increase tank venting and also stage wéight by creating '"unuseable
residuals'', Accurate prediction of propellant stratification is important,
though complex, since boundary layer flow can be laminar, turbulent, or
boiling. Gravitational effects and tank geometry also must be considered.
A widely used semi-empirical method is based on classical boundary
layer flow depositing fluid into various temperature strata through which
estimated temperature profiles are faired (Reference 1), The method is
adequate for gravity fields greater than one g (Figure 5), but is relatively
untested for low gravity. A more recent stratification analysis uses a
matrix-model solution of the Navier-Stokes equations (Reference 2),
Predicted temperature and velocity fields are shown in Figure 6; analyti-
cal solutions are limited to laminar boundary layers. References 3 and

4 report other research,
Cryo-Propellant Pressurization Thermodynamics

Controlled tank pressurant flows are mandatory for weight, system
design, and reliability considerations, Pressurant flows mainly depend
upon tank pressure level, pressurant inlet temperature, heat input, and
internal heat and mass transfer. Pressurant flows can be dependably
predicted, A widely used method applies parameters shown in Figure 7
and digital computers (Reference 5), Needed empirical coefficients

were determined with test data derived from configurations shown in
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Figure 8 (Reference 6). Measured and predicted pressurant flow rate
and tank pressure compared in Figure 9 agree within approximately
10 percent, KEarlier studies are reported in Reference 7 and 8, The

various prediction methods are compared in Reference 6.
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Cryo-Propellant Conditioning
Propellant temperature differences between the bulk, feed duct, and
rocket engine pump inlet must be minimized to eliminate fluid geysering

hazards and engine start failure. Design principles, thermally insulated



components, cryogen circulation systems, and localized subcooling tech-
niques provide the required cryo-propellant temperatures. The data
correlation of Figure 10 (Reference 9) permits the selection of geyser-
free systems. Often, however, imposed constraints necessitate other
design solutions, preferably, free of potential failure. A natural recir-
culation system satisfies this requirement; its performance can be

accurately predicted (Figure 11, Reference 10),
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Frequently, cryo-propellant temperatures are controlled by inject-
ing a non-condensing gas into the propellant at the desired location. The
degree of cryogen subcooling depends on injection gas, temperature,
rate, and duration. Methods for predicting subcooling of liquid oxygen
and hydrogen and related test data are published in Reference 11 through

13. Predicted and measured cryogen cooling are compared in Figure 12,

TEST SCHEMATIC
95 2

\ HELIUM\I!\‘JECTION
T, *K)
e L] -] .y ;

20

LIQUID OXYGEN

89
85 © © MEASURED

—— COMPUTED

INJECTION TEMPERATURE © T, (°K)
INJECTION FLOW RATE : 0.06 (m3/sec)
80|

CRYOGEN TEMPERATURE (°K)

LIQUID NITROGEN

70 i i i i i
0 100 200 300

HELIUM INJECTION TIME ({sec)

Fig., 12 Measured and Computed Liquid Oxygen and Nitrogen
Subcooling Through Helium Injection

CRYO-PROPELLANT STORAGE

Present.space flight operations require cryogen storage durations
of a few hours, but future flight operations will require cryogen storage
durations of one year or more. Long duration cryogen storage requires
advanced insulation and technologies such as zero leakage fluid compo-
nents, liquid separation and trapping devices, stratification destructors

and possibly vapor reliquefiers, and controlled propellant state (slush



or subcooled), Insulations for both short and long missions and fluid
leakage are discussed,
Insulation - Short Term Storage
Figure 13 tabulates thermal insulation used on the hydrogen tanks of
some space vehicles and largely summarizes present insulation tech-

nology. References 14 through 17 report most insulation research,
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Case A insulation is jettisoned at altitude and is more efficient than
implied; jettisoning, however, is complicated. Hydrogen and helium
(pressurant gas) permeate internally located insulation (Case B) and
deteriorate insulation and stage performance. External insulation
(Case C) requires a helium purge for eliminating cryo-pumping hazards.
Residual helium also deteriorates insulation and stage performance.
The external insulation (Case D) consists of isolated cells, Unlike other

insulations, rupture or helium penetration of these cells deteriorates



insulation performance only in the affected area, This concept has been
tested (Reference 16) but needs further development,

Insulation reliability and trouble-free operation during ground check-
outs, captive firings, and prelaunch are important and require conserva-
tive designs. Furthermore, to achieve success a high degree of quality
control must be applied during manufacturing and installation on a
cryogenic tank,

Insulation - Long Term Storage

A development objective is to limit loss of liquid hydrogen for
large containers of approximately 250, 000 pounds capacity to 5 per-
cent per year; thus, thermal insulation performance of present-day
stages must be improved by several orders of magnitude for long
duration space missions,

Evacuated lightweight multi-layer reflective foils, as used in rail-
way and truck dewars, are being applied, The evacuated heavy wall
containers used commercially are unacceptable for flight and must be
replaced by lightweight, flexible designs. Insulations, either evacuated
on the ground or during flight in space, are considered. Regardless of
insulation type, satisfactory thermal performance in space requires an
insulation internal pressure less than 1075 torr. A major problem for
the ground evacuated insulation is the development of a flexible, light-
weight, evacuated container, Major problems for the insulation
evacuated during space flight are thorough ground purging and timely
insulation pressure reduction to 1075 torr,

Significant research in many areas is reported in References 18
through 23; however, thermal test data from potential flight tankage
have only recently been obtained for modest storage duration objectives,
A typical test tank is illustrated in Figure 14; measured thermal per-
formance of applied insulation in a simulated space environment was
wor se than estimated by a factor of three. Improved thermal perform-

ance and predictions can be obtained through refinements in design and
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analysis; however, insulation technology for extended storage requires
additional efforts,
Cryo-Propellant Component Leakage

Besides evaporation of cryo-propellants, losses caused by leaking
components, such as shutoff or vent valves, shaft seals, threaded or
flanged fluid connectors gain importance for extended space flight,
Cryo-propellant leakage can be expensive and cause functional failures
and even loss of a mission, Problems are generally encountered with
the leak-tight sealing of moving parts in cryogenic flow control com-
ponents if one-shot burst diaphragms are not applicable, During their
development phase, cryogenic flow components require careful monitor-
ing and elimination of leakage. Leakage losses for various leak rates
and storage time are given in Figure 15; research efforts to advance

this technology appear in Reference 24 and 27,
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REDUCED GRAVITY AND CRYOGENIC PROPELLANTS

While coasting under low gravity, liquids must not be vented from
space vehicle propellant tanks. Reliable vapor separators trapping
liquids inside the tank do not exist; therefore, other methods for
venting only vapors are required. Propellant location in zero g is
controlled by surface tension forces and is predictable (Figure 16);
however, the zero gravity equilibrium fluid configuration can be
delayed or prevented by forces imparted during powered flight, orbital
insertion, and orbital flight. Such forces can result from propellant
sloshing, deflection of the vehicle structure, thermally induced
boundary layer flow, small drag forces, etc. Results from research
in these and related areas are reported in Reference 28 through 32,
These and other such topics as behavior of hydrogen inside pressurized

tanks, venting of hydrogen, pressure increase for insulated containers,



thermal stratification, and minimum acceleration for settling propel-
lants have been recently studied in an Orbital Flight Experiment with
test duration over several hours. Vehicle accelerations of approxi-
mately 4 x 105 and 6 x 10~* g were maintained after insertion into
orbit. The lower acceleration was maintained during the major portion
of the experiment by continuous venting of vapor from the hydrogen
tank. The orbital experiment objectives are illustrated in Figure 17,
Selected results are discussed herein; Reference 28 reports complete

flight data,
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Low-g Liquid Dynamics (Orbital Insertion)
Propellant sloshing amplitude near slosh baffles was damped;
first mode sloshing amplitude at rocket engine cutoff was 3 inches,
Theory predicts slosh wave amplification for reduced longitudinal
vehicle acceleration, A vertical liquid travel of 127 inches was

calculated, which corresponds to a vehicle acceleration decrease from



3.5t0 6x 107% g at engine cutoff. The flow pattern which developed
immediately after orbit insertion is shown in Figure 18. A propellant
forward motion of 140 inches was observed, Motion ceased 1 minute
after engine cutoff, Individual contributions from such sources as fluid
sloshing and boundary layer velocity are not identifiable. Liquid
disturbances were not noted .77 seconds later when vehicle longitudinal
accelcration decrcased from 6 x 10°% to 4 x 10-5 g. One hundred and
fifty seconds after engine cutoff, propeilants were relocated below the
tank baffle and an axial acceleration of 4 x 10~% g sufficed to keep pro-
pellants settled. Though specific fluid damping parameters were not

obtained, the information gained is valuable.
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Low-g Cryogen Venting
An excessive vent rate of a cryogen causes the liquid to enter a
metastable state., Persistence of this metastable state depends upon
such parameters as rate of depressurization, liquid purity, and number
of nucleation sites inside the container. One of three phenomena can

result:



Boilover - Surface evaporation and vapor formation at the nucleation
sites may proceed rapidly enough to satisfy the changing equilibrium
conditions, Since low bouyant forces prevent vapor bubbles from
escaping, the liquid volume expands (Figure 19).

Bumping -~ Sudden liquid eruption can occur if boilover does not remove
superheat in a liquid. Bubbles of almost molecular size may form
within the superheated liquid; the bubble pressure may eventually become
excessive and the bubbles so numerous that the bubbles unite with almost
explosive force, The magnitude of this phenomenon has been observed

but never measured,.
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at Zero Gravity (Boilover Phenomena) - Data From Drop Tower



Bumping and Boilover - Both boiling modes could occur in large con-

tainers of pure liquid; since much of the bulk liquid would be independent
of container boundary nucleation sites, liquid superheatirng is more likely
to occur, Beginning 100 seconds or less after each vent initiation of the
orbital hydrogen experiment (Figure 20), liquid globules one to several
inches in diameter were propelled forward, Although visibility was
impaired, the surface rose approximately 1 foot,

These data are used to establish maximum cryogen container vent

rate, which is important for stage design.
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Low-g Cryogen Tank Pressure Rise
Tank pressure rise for a closed container was measured during a
1-1/2 hour coast period. Initial and final pressure and temperatures
within the tank are shown in Figure 21. The existence of a thermal

boundary layer flow and stratification are apparent. The lack of ullage



gas heating data in a reduced gravity environment resulted in pressure
rise predictions less than measured. Standard free convection equations
(Reference 33) actually predict heat transfer to the ullage gas within 20
percent of measured values. Nucleate boiling along walls adjacent to the
liquid negates free convection equation usage in the liquid region; how-
ever, the measured thermal boundary layer thickness agrees with the

boundary layer thickness calculated by procedures of Reference 1.
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CONCLUSION

Cryogenic technology for space applications has advanced within the
past decade; however, potential missions utilizing cryogens for a year
or more are most demanding on technology and require significant
advances, particularly in high performance insulation, other media for
enhancing storage, and understanding and controlling the behavior of

cryogens in reduced and zero-g environments,
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