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!iith t h e  ar?ver~t of mnned space f l i g h t ,  heavier emphasis must be placed 

on reli.abi.lity, cre:h- safe ty ,  and mission success. These goals must be 

real5 zed with acconpan:ying minimum weight design and minimum cost .  Require- 

nents f o r  a successflzl space f l i g h t  demand among other  th ings  a thorough 

knovledge of t he  d;.mami.c problems i n  launch vehicles and spacecraft .  

Increases i n  t h e  vehicle s ize ,  launch t h rus t ,  and re-entry speed 

increase t h e  sever i ty  of in te rac t ion  of t h e  vehicle s t ructure ,  contained 

f l u id s ,  and subsystems. For preliminary design purposes t h i s  in te rac t ion  

may 5e approximated from past  performance, rough estimates, and simple idea l i -  

zations.  IJowever, such rough predictions o r  estimates must be followed by 

rigorous long-term research so t h a t  a l l  phases of t h i s  in te rac t ion  process 

a r e  investigated.  Unfortunately these  long term s tud ies  which help t o  pre- 

vent f l i g h t  faplures a r e  d t f f i c u l t  both t o  plan and t o  finance. '::'hen d i f f i -  

c u l t i e s  a r e  encountered i n  such a problem, qu i te  of ten t h e  f a s t  and simple 

' : f ixn resorted t o  f o r  e ~ p e d ~ e n c y  may penalize fu ture  projects ,  s ince  adequate 

research i n t o  t he  problem has not been accomplished. 

Since d;rl?amic probl-ems i n  1-aunch vehicles and spacecraft  so v i t a l l y  

a f f ec t  t h e i r  r e l i a b i l i t y ,  and s ince  t he  r e l i a b i l i t y  of our vehicles involve 

our nat ional  pres t ige ,  more long-term research i n to  s t ruc tu r a l  dynanics i s  

necessary. Some of these  dynamic problems a r e :  



Crawler-transport-vehicles d~mamics 

Ground wind dur ing  pre-laimch and launch 

Acoustic envi.rorment a t  launch 

Vehicle  response t o  acous t i c  environment 

Thnis t  build-up s t r u c t u r a l  t r a n s i e n t  
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1. Crawler-Transport-Vehicle Dpanlics 

An examination of  t h e  n a t u r a l  v i b r a t i o n  c h a r a c t e r i s t i c s  or" t h e  pre-1-aunch 

conf igu ra t ion  ( i . e . ,  t h e  Sa tu rn  7 ,  t h e  launch p l a t f o m  and t h e  wl:hj.li c a l  tower) 

i s  warranted i n  view of 

1 )  t h e  t r a n s i e n t  dynamic behavior  induced du r ing  t h e  c rawle r - t r anspc r t a t i on  

phase of t h e  pre-launch opera t ion ,  

2) t h e  t r a n s i e n t  dynamic behavior  induced by ground winds, and 

3) t h e  t r a n s i e n t  d;lmamic behavior  induced by engine s t a r t -up ,  and i n  t h e  

c a s e  of a b o r t ,  engine cut-off and rebound. 

The c o ~ n p l e t e l y  asseulbled pre-launch conf igura t ion ,  shown i n  F i p r e  1, 

c o n s i s t s  of t h e  350-ft Sa tu rn  V, t h e  two-story, 2,000-ton launch p l a t f c r n ,  and 

t h e  400-ft ,  750-ton umbi l i ca l  tower.  The conf igu ra t ion  i s  moved t o  t h e  I.21.inch 

pad by  a crawler - t ranspor te r  over  a d i s t a n c e  i n  excess  of two x i l e s  a t  rcughly 

t h e  speed of one mi le  per  hour. Four hydraul ic  c y l i n d e r s  main ta in  t h e  l e v e l  o f  

t h e  load  on t h e  c rawler - t ranspor te r  t o  w i th in  10 minutes of a r c .  

A t  t h e  launch pad, which c o n s i s t s  e s s e n t i a l l y  of  a concre te  foundation 

housing t h e  flame d e f l e c t o r ,  t h e  launph p la t form i s  secured b;r~ six s t e e l  

p e d e s t a l s  and f o u r  extendable columns. ( s e e  F igure  2 . )  The stay-tine a t  t h e  

launch s i t e  i s  approximately one week. 

The s t r u c t u r a l  i n t e g r i t y  of t h e  Sa turn  V dur ing  t h e  pre-launch and i a u m h  

ope ra t ions  depends on, i n  a d d i t i o n  t o  o t h e r  cons ide ra t ions ,  i t s  d;mxdc c o ~ p a t i -  

b i l i t y  wi th  t h e  launch p la t form and t h e  m b i l i c a l  toTrer .  

The n a t u r a l  v i b r a t i o n  c h a r a c t e r i  st5 c s  of t h e  pre-launch con? i ~ ; u r a t i  on should 

be such t h a t  no adverse i n t e r a c t i o n  wi th  t h e  d3manic behavior  of t h e  crawler- 

t r a n s p o r t e r  occurs  duri-ng t h e  t r i p  t o  t h e  launch s i t e  and, i n  t h e  event  of  s torm 



warnings, r e tu rn  t o  t he  v e r t i c a l  assembly building. These cha r ac t e r i s t i c s  

a l so  should r e f l e c t  no severe djmar~~ic load arzplif icat ion o r  c r i t i c a l  f a t i cwe  

loads due t o  unsteady ground winds during t h e  s t a y - t h e  a t  t he  launch s i t e .  

The crawler t r anspor t  system i s  being developed by t h e  Kennedy Space Center. 

The capab i l i t y  of adjus t ing t h e  na tu ra l  v ib ra t ion  cha rac t e r i s t i c s  of t he  

pre-launch configuration augments t h e  f l e x i b i l i t y  of t h e  nobi le  launcher 

concept. The na tu r a l  frequency and t h e  damping can be changed appreciably 

by using t h e  umbil ical  service  a m s  as s t r u c t u r a l  t i e s  between t h e  Saturn V 

and t h e  umbil ical  tower. Since l o c a l  overs t ress ing of t h e  Szturn V may cause 

more harm than t h e  imposed environmental load, a l l  e ight  of t h e  service  arms 

cannot be used a s  s t r u c t u r a l  t i e s .  PIoreover, it i s  apparent t h a t  each se rv ice  

arm used i n  t h i s  manner w i l l  have attachments which a r e  consis tent  with t h e  

l o c a l  Saturn V s t ruc tu re .  



Figure 1. Saturn V Pre-Launch Csnfiguratian 



Figure 2. Advanced Saturn Launch Complex 39 



2. - Ground TIind nuring Pre-Launch and Launch 

Resona t  loadlng conditions encountered during recent NASA-Langley ground 

wind t e s t s  of t h e  Saturn V scale  model have emphasized t h e  uncertainty of 

t e s t  r e s u l t s  obtained without ful l -scale  Reynolds Number siinulation. This 

resonant condition t rans la ted  t o  t he  ful l -scale  vehicle would occur a t  

a p p r o ~ ~ a t e l y  40 ft/second . A t  t h i s  velocity,  t h e  fu l l - sca le  Reynolds Number 

would be approximately twice t h a t  f o r  t he  resonant condition during t h e  t e s t .  

(see  Figures 3 and 4 .  ) 

Furthermore, t he  experimental f indings reported by Roshko leave a c l e a r  

p o s s i b i l i t y  t h a t  periodic vortex shedding may be encountered a t  t h e  high flow 

Reynolds lVumber associated with Saturn V ground v&d c o ~ d i t i o n s .  I n  any case, 

su f f i c i en t  substant ia t ion of periodic vortex shedding f o r  Saturn ~ / ~ ~ o l l o  

ground wind conditions has been found t o  merit serious consideration of i t s  

implications. 

The existence of periodic vortex shedding a t  any Reynolds Number above 

s u b c r i t i c a l  i s  a r ad i ca l  a l t e r a t i on  of f l u i d  flow concepts t h a t  have been 

accepted f o r  mafiy years. Further substant ia t ion of t h i s  phenomenon i n  i t s  

s i m ~ l e s t  form i s  believed necessary. D r .  Y. C .  Fung, i n  a recent informal 

conversation, pointed out t h a t  t h e  wake per iod ic i ty  observed by Roshko i s  

not incontrovertible evidence of s imi la r ly  f luc tua t ing  aerodynamic forces  on 

t h e  cylinder.  He implies t h a t  t h i s  per iod ic i ty  may be developed within t h e  

wake i t s e l f .  

I f  periodic vortex shedding from a cylinder ex i s t s  a t  higher Reynolds 

Numbers, t he  i n a b i l i t y  of current  wind tunnel f a c i l i t i e s  t o  reproduce f u l l -  

s ca l e  Reynolds Numbers w i l l  become a serious l imi ta t ion  t o  t e s t  r e su l t s ,  



p a r t i c u l a r l y  i f  " f ixes"  such a s  spoi lers ,  windscreens, s p l i t t e r  p la tes ,  and 

other  flow a l t e r a t i o n  devices a r e  t o  be investigated.  Although a pa r t i cu l a r  

device ray be found s a t i s f ac to ry  a t  w&um t e s t  Reynolds Numbers, which a r e  

on t h e  order of 6 t o  7 mill ion,  i t s  s a t i s f ac to ry  operation a t  fu l l -scale  

design Repolds  Numbers of 15 t o  20 mil l ion and under na tu r a l  conditions i s  

not  assured. 

Finally,  it may be s t a t ed  t h a t  current  ground wind loads c r i t e r i a ,  which 

do not allow f o r  periodic vortex shedding, produce c r i t i c a l  loads on t he  S-I1 

stage.  S t r inger  spacing of t h e  hyd'rogen tank wal l  i s  s e t  by ground wind 

condit ions.  Launch re lease  during a design wind produces loads on t he  Apollo 

s t r uc tu r e  which a r e  c lose  t o  c r i t i c a l .  Added considerat ion of periodic vor tex 

shedding f o r  s t r u c t u r a l  design would i n  a l l  p robab i l i ty  r e s u l t  i n  a s t r u c t u r a l  

weight increase.  



F i p e  3 .  Fbll-Scale Frequency Comparison 



~ e ~ n o l d s  N u m b e r  x / o - ~  

Figure 4. Frequency Comparison of Various Test Models 



3. Acoustic Environment a t  I.,~unck, 

During t h e  launch phase, two major sources of noise  a r e  important: rocket 

engine noise  and aerodynarnjc noise. Both have a random character  and a broad 

frequency spectrum. Rocket engine noise predominates i n  t h e  b r i e f  subsonic 

p a r t  of t h e  launch, a.f ter  which aerodynamic noise p reva i l s .  The rock.et noise  

i s  generated i n  t h e  exhaust stream and transmitted through t he  a i r  t o  t h e  

vehic le  surfaces.  A t  l i f t - o f f ,  it i s  a l so  rei'lected from t h e  grol~nd surface.  

The noise l e v e l  i s  a function of engine power and t h e  distaxce from the  booster  

a f t  end t o  t h e  payload region. IrmirrLum overa l l  sound pressure l e v e l  (sPI.) of 

t h i s  noise  a t  t h e  payload end. i s  expected t o  be i n  the  l l + O  t o  150 db. range. 

Figure 5 shows t he  general  pa t t e rn  of t h e  noise  t i n e  his tory .  
? -- - -- . - - - - - -- - - - - - - - - . - - -- -- -- . - -  

Figure 5. Time History of Overall External  Acoustic Levels 



4. Vehicle Response t o  Acoustic Environment 

The top ic  of response of a diff icult- to-define s t ruc tu r a l  system t o  

acoustic exc i ta t ion  i s  receiving some a t ten t ion  these  days and hopefully 

w i l l  be researched more thoroughly in the  fu ture .  

Present p rac t ice  seems t o  be t o  review as  much data  on s b i l a r  systems 

a s  possible and t o  r e l a t e  t h e  measured vibrat ion l eve l s  of the  known system 

t o  i t s  acoustic f i e l d .  Then by predicting t he  acoustic l e v e l  of t he  new 

design, an estimate of t he  v ibra t ion  response of t h e  new system i s  made. 

While t h i s  seems t o  be an e f fec t ive  engineering approach, refinements and 

improvements a re  desired.  The source of v ibrat ion and acoustic noise i n  a 

t y p i c a l  miss i l e  a r e  shown i n  Figure 6. 

It i s  important t o  note here t h a t  ground equipment, vehicle equipment, 

and of ten  payload equipment must operate i n  t h i s  v ib ra t ion  environment induced 

by t h e  acoustic environment. 

A word of caution t o  you s t rud tu ra l  dynamists -- don ' t  make t he  mistake 

of overlooking t h e  bracket, o r  means of attachment, between funct ional  com- 

ponents and basic s t ruc ture .  1 , h y  of us have discovered t h e  hard way t h a t  

inadequate mounts can show up i n  a system design. 





5. Thrust Buildup S t ruc tu ra l  Transient 

The ign i t ion  of a  modern rocket engine applies l a rge  loads rapidly  and 

somewhat randomly with respect  both t o  time of s t a r t i n g  t h e  buildup and t h e  

slope of t he  buildup curve. Since t he  engine i s  t h e  forc ing function and 

it has var ia t ions ,  a  s t a t i s t i c a l  model f o r  t he  forc ing function must be 

es tabl ished.  

iliow when mult iple engines a r e  contemplated in design, t he r e  may be some 

benef ic ia l  s t r u c t u r a l  dynamic e f f ec t s  from staggering t he  engines. Here t h e  

idea  i s  t o  oppose t h e  f i r s t  d;mamic t r an s i en t  with t h e  proper phasing of t he  

second t r an s i en t .  

Another way t o  reduce t h e  dynamic load f ac to r  would be t o  decrease t h e  

r a t e  of t h ru s t  buildup. 

I n  Chapter 3 of S t ruc tu ra l  Design f o r  Dynamic Load, (Mc~raw H i l l ,  Rorris  

e t  a l . )  t h e  s t r u c t u r a l  response of a one-degree-of-freedom system i s  discussed 

and t h e  dynamic load f ac to r  i s  presented f o r  some d i s c r e t e  types of time- 

varying load applicat ions.  

Higher longi tudinal  modes should be considered t o  assure t h a t  excessive 

loading i s  not imposed on t he  system. La te ra l  modes should be considered 

f o r  unsymmetric loading produced by t h e  randomness between symmetric engines. 

This e f f ec t  could penalize c e r t a i n  types of payloads as wel l  a s  o ther  types 

of s t r uc tu r e  and equipment. 

I n  design analys is  t h i s  e f f ec t  should be considered i n  combination with 

t h e  wind o sc i l l a t o ry  and steady-state e f fec t s .  Figures 7 and t3 show t y p i c a l  

t h ru s t  buildup s t r u c t u r a l  t r ans ien t s ,  and shear and bending-moment d i s t r i -  

bution a t  launch, f o r  a  space vehicle of t he  Saturn V configuration.  
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6. On-Pad Abort S t r u c t u r a l  Transient  

The on-pad abor t  s t r u c t u r a l  t r a n s i e n t  i s  t h e  same bas ic  phenomenon as 

t h e  previous ly  mentioned thrust-buildup t r a n s i e n t .  Here it i s  t h e  removal 

of l a r g e  fo rces  r a t h e r  r a p i d l y  when t h e  engines a r e  shut  down. 

I n  general ,  t h e  t h r u s t  decay curve has a lower average negat ive  s lope  

than  does t h e  t h r u s t  buildup curve have a p o s i t i v e  s lope  and, i n  addi t ion ,  

i s  u s u a l l y  more repeatable  o r ,  i f  you prefer ,  has a smal ler  s tandard 

devia t ion .  

There a r e  some combined loadings t h a t  should be considered here :  

1. t h e  t h r u s t  buildup dynamic load f a c t o r ,  

2.  wind inf luence ,  o r  

3. an engine f a i l i n g  t o  start 

may be t h e  reason f o r  t h e  abor t .  These may combine i n  various ways and some 

s t a t i s t i c a l  approach i s  probably very  much i n  order .  

Again some reduct ion  in loads  may r e s u l t  from sequencing t h e  shutdown 

t ime between symmetric groups of engines. 

Figures 9 and 10 a r e  examples of t h e  on-pad abor t  s t r u c t u r a l  t r a n s i e n t  

a t  two se lec ted  s t a t i o n s ,  and a x i a l  load d i s t r i b u t i o n  a t  rebound. 







7. Lamch Release S t ruc tu r a l  Transient 

The sudden re lease  of a vehic le  t i e d  t o  t he  launch pzd, with lcads  

applied a s  ground winds and gusts, r e s u l t s  i n  o s c i l l e t i c n s  0: t h e  vehic le  

due t o  t h e  exc i t a t ion  of t he  free-free modes. (2efer  t o  Fi,gure 8 . )  The 

i n i t i a l  condit ions depend on t h e  prelaunch loads h i s t o ry  hj.t,h e s s e n t i a l l y  a 

negative s t ep  input of t he  tie-down react ions  a t  t i n e  Tsro. i'.n example of 

t he  s t r u c t u r a l  t r an s i en t  a t  launch re lease  j s shovV= i n  P i p r e  11. The time 

h i s t o ry  of t h e  bending moments and shears a% any vehicle s t a t i o n  cons i s t s  of 

t h e  sumat ion  of ~ i n u s o i d a ~  damped o sc i l l a t i ons  of a l l  modes required t o  

adequately rspresent  t h e  dpamic  response, together  with t h e  por t ion of t h e  

steady s t a t e  response which may be s t a t i c a l l y  ca lcula ted.  ( see  Figure 12. )  

This condit ion i s  c r i t i c a l  f o r  t he  upper s tages  of t he  vehic le  where t h e  
L - 

s t a t i c  loads p r i o r  t o  launch a r e  magnified by a l a rge  f ac to r .  

The longi tudinal  dynamic load calcula t ion i s  s imi la r  t o  t h e  l a t e r a l  

condit ion usin,g a x i a l  modes. Consideration must be given t o  t h e  engine 

s t a r t i n g  sequences and t he  time his tom^ of t h r u s t  together  with launch pad 

f l e x i b i l i t y  and t h e  of re lease .  

Besides influencing t he  s t r u c t u r a l  design of t he  system, t h i s  sudden 

re lease  could t r i g g e r  t h e  "pogo" problem i f  t h a t  i n s t a b i l i t y  exis ted  f o r  t h e  

system a t  t h a t  time. Axial load d i s t r i bu t i on  a t  time of re lease  f o r  a 

vehic le  of t h e  Saturn V configuration i s  shown i n  Figure 13. 

Such connections along t h e  s i de  of t he  vehic le  as  egress arms, propel- 

l a n t  topping l i n e s ,  and umbil ical  arms produce kick loads upon t h e i r  r e l e a se  

a t  l i f t - o f f  which should be looked i n t o  with regard t o  vehicle-payload 

problems and a l so  with regard t o  ground equipment problems. 
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8.  Acoustic and buffet in^ Environment i n  Flight  

The problems associated with successful  operation of launch vehicles in 

t h e i r  acoustic environment have multiplied i n  recent years. Booster engine 

t h r u s t  has increased rapidly  without a p a r a l l e l  increase i n  vehicle surface 

densi ty  and s t i f f n e s s .  Mission requirements have of ten d ic ta ted  t h e  use of 

composite vehic les  with a resu l t ing  compromise i n  aerodynamic performance. 

A s  s t a ted  e a r l i e r ,  t h e  acoustic environment i s  due primarily t o  two sources: 

booster engine noise and aerodynamic noise. A t  high ve loc i ty  f l i g h t  through 

t h e  atmosphere, aerodynamic noise from t h e  turbulent  boundary layer  i s  t he  

more s ign i f ican t .  

Booster engine noise i s  a by-product of turbulent  mixing of t h e  exhaust 

gases with t h e  surrounding a i r .  The e f fec t ive  acoust ical  sources a r e  dis-  

t r i bu t ed  along t he  j e t  exhaust, with t h e  high frequencies generated c lose  

t o  t h e  nozzle. The most in tense  noise i s  generated i n  t h e  subsonic port ion 

of t h e  exhaust flow. During subsonic f l i g h t ,  engine noise w i l l  be propa- 

gated through t h e  atmosphere t o  t h e  vehicle skin, resu l t ing  i n  mechanical 

v ibratory response. 

Empirical methods have been developed t o  determine t h e  ove ra l l  acoustic 

power and spec t r a l  d i s t r i bu t i on  of acoustic energy generated by t h e  booster 

engines. These methods have proved adequate f o r  preliminary analyses of 

proposed launch vehicle systems. 

However, it i s  recognized t h a t  t h e  assumptions used in these s tud ies  

a r e  no longer va l id  i n  t he  near and intermediate f i e l d  of l a rge  booster 

vehicles.  I n  t h e  near f i e l d  of these  acoustic sources pressure and ve loc i ty  

of t he  disturbance a r e  not everywhere i n  phase, making t h e  determination of 



energy i n  t h e  near f i e l d  d i f f i c u l t .  The extremely la rge  f luc tua t ions  i n  t h e  

near f i e l d  cause nonlinear propagation e f f ec t s  which have not yet  been f u l l y  

exp labed  . 
Since booster engine noise i s  produced by turbulent  mixing of t he  

exhaust stream and must be propagated forward t o  t h e  vehicle skin,  it w i l l  

not be observed on t he  vehicle a t  supersonic speeds. Noise from aerodynamic 

sources w i l l  begin t o  predominate during transonic f l i g h t .  A va r i e ty  of 

aerodynamic sources may contribute t o  t h e  composite environment. Most of 

these  sources w i l l  be pseudo-acoustic i n  natu.re. Sonic-induced vibrat ion 

of t h e  s t ruc ture  w i l l  occur a s  a r e s u l t  of t h e  t r ans f e r  of momentum by 

impingement of turbulent  eddies on t h e  vehicle skin.  These eddies w i l l  form 

as the  r e s u l t  of viscous in te rac t ion  between t he  vehicle skin and t he  sur- 

rounding a i r ,  o r  turbulent  flow separation caused by abrupt changes i n  

vehicle geometry. 

Preliminary s tudies  have indicated t h a t  t h e  flow disturbance caused by 

protuberances on t h e  vehicle surface w i l l  cause an acoustic environrent much 

more severe than t ha t  resu l t ing  from t h e  customary attached turbulent  boun- 

dary layer .  A t  t ransonic speeds, a weak normal shock wave i s  formed forward 

of t h e  protuberance, and under the  proper conditions of Reynolds number uld 

Mach number t h e  in te rac t ion  of t h i s  shock wave with t h e  boundary layer  w i l l  

be unstable, causing longi tudinal  o sc i l l a t i on  of t h e  shock wave resu l t ing  

i n  large-scale, low-frequency pressure f luctuat ions  on t he  vehicle skin. 

This phenomenon i s  thought t o  be t he  t r igger ing  mechanism f o r  transonic 

buffe t  and has been observed near body d i scon t inu i t i es  and abrupt changes 

i n  flow def lect ion angle. Another source of intense noise i n  t h e  forebody 



region of t he  protuberance w i l l  be caused by convection of turbulence 

through t h e  shock wave. This phenonlenon has been recognized as  t h e  

mechanism involved i n  t he  screech of choked j e t s ,  but ve r i f i c a t i on  i s  

required t o  j u s t i f y  t h e  analogy b i t h  t h e  present case. Although t h i s  

er,ergy w i l l  be primari ly radiated forward of t he  protuberance, the re  

w i l l  a l so  be a contribution t o  the  afterbody acoustic environment. 

The afterbody noise i s  due pri-marily t o  eddies shed by t he  project ion.  

At lorr Reynolds numbers, a regular  pa t t e rn  of eddies i s  shed from the  pro- 

jec t ion giving r i s e  t o  t h e  c l a s s i c a l  Aeolian tone. A s  the  Reynolds number 

increases ,  th ree  dimensional e f f ec t s  a r e  observed, t he  flow becomes turbu- 

l e n t  and in con t ras t  t o  t he  d i s c r e t e  energy of the  Aeolian tone, t h e  

acoustic environment becomes random and i s  bes t  described by a power spec- 

tm. The c l a s s i c a l  Aeolian tone has been wel l  described by a nmber  of 

researchers using L i g h t h i l l ' s  theory of sound generated aerodyr~m-ically. 

However, a combined ana ly t i c a l  and experimental study i s  required t o  extend 

t h e  theory t o  transonic and supersonic flow. 

This study should include t he  e f f ec t  of projection shape and s i z e  on t h e  

i n t e n s i t y  and spec t r a l  d i s t r i bu t i on  of energy i n  t h e  r\ral.;e. Further research 

i s  a l so  needed t o  develop a theory f o r  the  o s c i l l a t i n g  shock wave t u r b u l e ~ t  

boundary l aye r  in te rac t ion  and t o  ve r i fy  t he  sca l ing  laws used f o r  e s t h a t i n g  

t h e  aerodynamAc noise of f l i g h t  vehicles based on da t a  from wkld tunnel  

t e s t s  of sca le  models. These scal ing l a~vs  a r e  questionable because of t h e  

l a rge  dimensional r a t i o  of t he  model t o  t he  fu l l - sca le  vehicle and t he  

necess i ty  f o r  compromising some flow parameters during wind t w n e l  t e s t i n? .  



9.0 Coupling of - Engine and Vehicle DjmmLcs 

It i s  known from past  experience i n  l x ~ r ~ c h  vehicle ;-,.r~tems t k a t  t he  

in te rac t ion  of t he  propulsion sjrstenl and t he  longit,udinnl ~ o 4 z s  of t h e  

vehicle may cause chugging of t he  engine. The system interact ior-  i s  most 

e a s i l y  shown by t h e  closed loop schematic diagran i n  F i p r e  U. The t h r u s t  

of a given engine depends prirLlarily on t he  p rope l la r~ t  flo:r r a t e  and the  

mixture r a t i o .  The t h ru s t  a c t s  on t h e  vehicle,  exci tes  the  longi tudinal  

modes which i n  t u rn  cause pressure fluctuati.ons a t  the  bottom of t he  f u e l  

tanks. The r e su l t i ng  fluctu-ations i n  t h e  pump i n l ~ t  pressure r e s u l t  i n  a 

var iable  f1or.r r a t e  through t he  feed l i n e s .  This pay cause bubble formation 

a t  t h e  pmp i n l e t s  f o r  cryogenic f u e l s  which have high vapor pressures 'and 

requ.ire high f l ov  ra tes .  The bubbles would cause the  propellant  t o  a c t  as 

a compressible f l u i d  and would have the  e f f ec t  of adding a pneumatic spring 

t o  t h e  system. In  a t yp i ca l  case, t he  pmp discharge pressure depends on 

t h e  i n l e t  pressure and t h e  F I L I ~  speed. The propellant  i s  tapped from the  

pump discharge l i n e  f o r  use in the  gas generator. The gas generator i s  used 

t o  power the  turbines  which dr ive  the. propellant pumps, thus completing t h e  

cycle.  

I n  order t o  properly analyze the  complete system dynamics, t h e  complete 

t r a n s f e r  function f o r  t he  engine system i s  required. This information, how- 

ever, i s  not avai lable  from engine manufacturers and an advance i n  t he  

"state-of-the-art" i s  required. A t  present, one can only obtain those inf lu-  

ence coef f ic ien t s  which a r e  based on steady s t a t e  conditions. The use of 

these  coef f ic ien t s  cannot r e f l e c t  any phase l a g  which occurs in t h e  system 

and i s  analogous t o  using t h e  constant s t a b i l i t y  der ivat ives  (cl d ) i n  

f l i g h t  dynmics.  



FIGURE 14. COUPLING OF ENGINE AND VEHICLE DYNAMICS 
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9.1 longi tudinal  Vibration Nodes 

I n  order t o  improve t h e  method of obtaining longi tudinal  v ibrat ion 

modes a more sophist icated approach i s  required in analyzing t h e  behavior 

of t h e  propellant  i n  t h e  bulkheads of space vehicles.  The bulkhead of a 

launch vehicle may be ideal ized as  an obla te  spheroidal  tank p a r t i a l l y  

f i l l e d  with an inviscid  incompressible f l u id .  The na tura l  frequency of 

t h i s  system involves t h e  in te rac t ion  of t h e  f l u i d  and t h e  spheroidal s h e l l  

a t  t h e i r  in te r face .  

The mathematical fo.rmulation of t h e  s h e l l  equations a r e  most 

e a s i l y  done by use of ob la te  spheroidal coordinates. This coordinate 

system i s  a l so  convenient f o r  specifying t h e  compatibil i ty of t he  f l u i d  

and s h e l l  ve loc i ty  normal t o  t h e i r  common surface.  Diff icul ty ,  however, 

i s  encountered i n  specifying t h e  pressure a t  t h e  f r e e  l iqu id  surface.  It 

therefore  seems advisable t o  f i r s t  solve t he  problem of a comple t e ly f i l l ed  

spheroidal  tank and thus avoid t h i s  d i f f i c u l t y .  An e f fec t ive  mass densi.ty 

could be used t o  produce t h e  same t o t a l  weight. It i s  reasonable t o  assume 

t h a t  f o r  near ly  f u l l  tanks t h e  above assumption i s  va l id .  

A Fkyleigh-Ritz approach t o  t h i s  problem, i n  which one assumes 

t h e  mode shapes f o r  t h e  l iqu id- f i l l ed  she l l ,  has been successfully applied 

t o  cy l i nd r i ca l  she l l s .  The na tura l  frequency of t h e  axi-symetr ic  vibra- 

t i ons  of an empty prola te  spheroidal s h e l l  has a l so  been obtained. The 

modes may be s imi la r ly  obtained f o r  an obla te  spheroid and may be used ir a 

simplif ied form f o r  t he  assumed modes. 

The detemnination of t he  mode shapes and frequencies f o r  a bulkhead 

with a free-l iquid surface w i l l  require t he  development of new techniques. 



9.2 Propellant Line D ~ m a ~ 3 . c ~  

The vibrat ion of a tube with i n t e r n a l  flowing f l u i d  has been 

studied by G. W. FIousner, El. H. Long, and F. Niordson. Housner and Long 

assume t h e  tube t o  ac t  a s  an Euler beam i n  f lexure  and Niordson develops 

t h e  more general case i n  which t h e  tube i s  t rea ted  a s  a she l l .  Some 

r e s u l t s  a r e  avai lable  f o r  t he  former case i n  terms of s e r i e s  solutions.  

From t h e  r e s u l t s  obtained thus f a r  f o r  t h e  beam, it appears t ha t  a t  a 

ce r t a in  c r i t i c a l  ve loc i ty  t h e  na tura l  frequency of t he  system i s  reduced 

t o  zero and a propellant  l i n e  reac t s  very much l i k e  a beam column and i s  

unstable. Niordson's formulation of t h e  problem i s  qui te  thorough but he 

i s  unable t o  solve t h e  s h e l l  equations except f o r  t he  case in which t h e  

ve loc i ty  of t h e  flowing f l u i d  is  zero. 

Considerable work needs t o  be done before t h e  dynamics of pro- 

pe l lan t  l i n e s  can be properly understood. The avai lable  a p p r o x h t e  

solut ions  f o r  even t h e  beam equations cannot be considered a s  t h e  f i n a l  

r e s u l t s  t o  t h i s  problem. The e f f ec t s  of f l u i d  v i scos i ty  and t h e  turbulent  

boundary layer  on t h e  o sc i l l a t i ons  of t h e  tube a re  unknown and require 

invest igat ion.  



10.  Vapor-Liquid and Bulkhead In te rac t ion  During Engine Cutoff Transient  

The abrupt  removal of t h e  t h r u s t  load a t  t h e  end of a  boost s t a z e  may 

produce a t r a n s i e n t  l i qu id - she l l  response a t  t h e  veh ic l e  bulkhead. ( see  

Figure 15.)  This response a r i s e s  from t h e  sudden r e l e a s e  of s t r a i n  energy 

s tored  in t h e  bulkhead during t h e  boost phase, which must be converted t o  

k i n e t i c  energy by t h e  enclosed l i q u i d  f u e l .  Because of t h e  nonl inear  time- 

dependent boundary condi t ions  a t  t h e  f r e e  sur face ,  t h i s  problem i s  not  

e a s i l y  solved.  

The v i b r a t i o n  of s h e l l  s t r u c t u r e s  wi th  and without i n t e r n a l  f l u i d s  has 

been determined by a number of inves t iga t ions .  These methods assume an 

appropr ia te  t r igonometric  s e r i e s  f o r  t h e  node shapes and ob ta in  good r e s u l t s  

f o r  s h e l l s  of uniform th ickness .  The problem of re inforced  s h e l l s ,  however, 

does n c t  lend i t s e l f  r e a d i l y  t o  t h i s  method of a t t a c k  and a more p r a c t i c a l  

engineering approach i s  requi red .  ;Jith t h e  presence of bulkheads and. con- 

t a i n e d  f l u i d s ,  t h e  dynamic response of s h e l l s  t o  per iodic  and randon 

o s c i l l a t i o n s  i s  extremely hard t o  analyze. 



FIGURE 15. SPRING-MASS REPRESENTATION OF THE SATURN V VEHICLE 



11. Separat ion of Stages o r  Shrouds ( ~ e t t i s o n i n ~ )  

The primary loads  occurr ing during s t ag ing  a r e  due t o  engine t h r u s t  

cut-off and s t a r t i n g  t r a n s i e n t s .  The sequence of engine t h r u s t  cut-off f o r  

t h e  spent  s t age  and engine s t a r t  f o r  t h e  succeedkg  s t age  represent  t h e  

f o r c i n g  func t ion  f o r  t h e s e  ioad condit ions.  I n  t h e  loads  calculation, t h e  

t r ans i t i . on  from pre-separat ion t o  post-separat ion veh ic l e  dynamic systems 

i s  accomplished by determining t h e  bolmdary condi t ions  a t  t h e  t ime of 

separa t ion .  A proper design requ-ires a compromise between. a coas t  period 

long enough t o  permit shut,do.m of t h e  engines of t h e  preceding s tage ,  but  

no t  so  long a s  t o  i n p a i r  a t t i t u d e  c o n t r o l  capa.bi l i ty .  g e t a i l e d  s t u d i e s  of 

t h e  sepa ra t ion  sequence a r e  v i t a l  t o  o p t i n i z e  design.  



12 .  Dynamics of F lu ids  under Low-g Rnvirowlent 

Some work has been done f o r  simple qeometric problems of o s c i l l a t l c n  

of liqu5.d-vapor i n t e r ?  ace about equil ibr ium ccnf igu ra t ions  . (see  Figure 16 .  ) 

I n f i n i t e s i m a l  o s c i l l a t i o n s  of a  globule of l i q u i d  and a  vapor bubble caused 

only  by t h e  a c t i o n  of su r face  t ens ion  fo rces  nay be fcund i n  Lamb. Free 

su r faces  of equi l ibr ium c o n f i ~ u r a t i o n s  i n  low-g env i roment  may be e:<pressed 

on ly  i n  t e r n s  of s e r i e s  expansions. PIatural frequencies and t h e i r  mode 

shapes can be obtatncd once t h e  appropr ia te  Green's funct ion  i s  deterinined. 

3ecause of t h e  corplexitgr of t h e  f r e e  sur face  boundary condi t ions ,  t h e  on ly  

l;no?m ~ e t h o d  f o r  so lu t ion  i s  t h e  use of appropr ia te  n m e r i c a l  procedures. 

T r m s i e n t  response of a  l i q u i d  i n  a zsro o r  low-g environment is  

another  a rea  i n  reed of study. Computer p rogrms  must be developed t o  pro- 

v 5 d ~  so1utior.s f c r  v a r i a b l e  b o ~ d a ~ r y  va lues .  



Figure 16. Test Configuration f o r  Determining Liquid Response 
t o  Tank Rotation 



13. Rendezvous and Docking 

Docking loads  o r i g i n a t e  during t h e  i n t e r v a l  of time from f i r s t  phys ica l  

contac t  o r  connection t o  f i n a l  vehic le  l a t ch ing .  The pre-contact o r  pre- 

connection t h r u s t i n g  i s  considered a s  p a r t  of t h e  rendezvous maneuver. gock- 

i n g  impact i s  shown i n  s h p l i f i e d  form i n  Figure 17. The load magnitudes 

introduced during docking a r e  pr imar i ly  a funct ion  of (1)  i n i t i a l  condi t ions  

r e l a t i n g  veh ic l e  alignment and r e l a t i v e  ve loc i ty ;  (2)  phys ica l  d a t a  descr ib-  

i n g  veh ic l e  nass,  mass moment of i n e r t i a  and CG loca t ions ;  arld (3) arrangement 

and f l e x i b i l i t y  of t h e  docking mechanism members and immediate backup 

s t r u c t u r e .  A number of docking mechanisms have been and a r e  being i-nvestf- 

gated f o r  t h e  Apollo-IE?? docking s tud ies .  Yuch work must s t i l l  be done t o  

develop docking des ign  c r i t e r i a  and methods f o r  ana lys i s  of space s t a t i o r  

docking loads.  





l l+ .  zt ,abi l iza, t ion of Space S t a t i o n s  ..- with Cable-Connected Confimra. t ions 

Analysis of t h e  t r a n s i e n t  response of t h e  spinning compartnent-cable- 

counterfireight space s t a t i o n  has shown t h a t  l a r g e  ~ o b b l e  angles w i l l  r e s u l t  

from s l i g h t  d is turbances .  Eowever, ana lys i s  of t h e  response t o  g r a v i t y  

g rad ien t s  i s  i.nconclusive. 

The f r e e  v ib ra t ions  of t h e  compartment-cable-counterdeight space s t a t i o n  

were analyzed by a method based on t h e  c l a s s i c a l  l i n e a r i z e d  approach. The 

l a t e r a l  v i b r a t i o n  of t h e  conf igura t ion  was ca r r i ed  out  by both t h e  lumped 

parameter method and continuous r ep resen ta t ion  in t h e  form of p a r t i a l  d i f -  

f e r e n t i a l  equations. The r e s u l t s  obtained from t h e  two methods a r e  consis- 

t e n t .  The l a t e r a l  v i b r a t i o n  with t h e  an,nular r o t a t i o n  of end masses was a l s o  

stu.died. The e f f e c t  of end r o t a t i o n s  do not  s i g n i f i c a n t l y  change t h e  mode 

shape except a t  t h e  e ~ d  nea r  t h e  count,erwei.ght i n  t h e  f i r s t  and second mode; 

t h e  f requencies  a r e  h i ~ h e r  than  those  without end r o t a t i o n .  The inc rease  

ic  frequency ra rges  from seven percent  i n  t h e  fmdamenta l  mode monotonically 

decreas ing  t o  one percent  i n  t h e  f i f t h  mode. ( s e e  F i L q r e  18 . )  

The s t a b i l i t y  a n a l y s i s  of t h e  compartment-cable-counterweight configur- 

a t i o n  ( see  Figure 19)  r evea l s  t h a t  i n  order  t o  keep a r e a l  a,rld p o s i t i v e  

n u t a t i o n  angle  d , t h e  magnitude of energy d i s s i p a t i o n  AT/fe i s  r e s t r i c t e d  

by t h e  r a t i o  of t h e  maximum moment of i n e r t i a  Ix t o  t h e  in termedia te  mcment 
T 

A 

of i n e r t i a  . The smal ler  t h e  r a t i o  - IY t h e  more s e n s i t i v e  i s  t h e  s t a -  
17,' 

b i l i t y  of t h e  conf igura t ion  t o  t h e  amount of energy d i s s i p a t i o n .  Since 

AT 5 = 1.00874 f o r  t h e  cable  conf igura t ion ,  t h e  maximum poss ib le  value of /T, 
IY 
i s  around 0.001. For AT/fe = 0 .OOl, t h e  nu ta t ion  angle  d v a r i e s  

between d min = 0.0934 degrees and nax = 19.775 degrees.  







For a smaller 'He = 0.0001, t he  angle d var ies  between 0( min = 0.0295 

degrees and d nax = 6.142 degrees. This v e r i f i e s  t h a t  t h e  compartment- 

cable-counterweight configuration i s  a l e s s  than des i rab ly  s t ab l e  c o n f i , ~ . r -  

a t i on  without e f f ec t i ve  dmping devi-ces . 
The spinning cable-connected space s t a t i o n  has a s t ab l e  c i r c u l a r  o rS i t ,  

but t h e  cable w i l l  o s c i l l a t e  under t h e  influence of the  g r av i t a t i ona l  

gradient  and w i l l  have a neu t r a l  s t a b i l i t y .  S t a b i l i t y  depends upon t h e  

ve loc i t y  - proport ional  darnpine device. For t he  g rav i ta t iona l  gradient  

alone, only a small percentage of t h e  c r i t i c a l  damping f ac to r  i s  required.  

The spin  r a t e  of t h e  configuration decreases gradually t o  a very small 

magnitude. Unti l  t h e  cable tension caused Sy spin i s  of t he  same order of 

magnitude as  t he  tens ion caused by t h e  g rav i ta t iona l  gradient ,  t h e  cable- 

connected configuration may not  be s tab le .  

However, physical  and mathematical approximations have been assuqeci 

in  t h e  formulation of equations : 1 )  r e s t r i c t i o n  of motion t c  t h e  o r b i t a l  

plane, 2)  a spher ica l  ear th ,  3) neglect  of forces  o ther  than t h e  fo rce  of 

gravi ty ,  and 4)  neglect  of change 04 cable length i n  t h e  der ivat ion of 

l a t e r a l  modes. I f  one o r  more of these  approximations a r e  corrected with 

r igor ,  t h e  conclusions already drawn may change. 

Consideration of these  approximations reveals  t h a t  i f  one i s  ser ious  

about t h e  appl ica t ion of tens ion members t o  .the connection of l i v i n g  modules 

of a space s t a t i on ,  an extensive research program must be conducted in  t h e  

future ,  with emphasis on t he  areas of three-dimensional cable dynamics, t he  

cable mate r ia l  and i t s  i n t e r n a l  energy d i s s ipa t ing  mechanism, t he  nonlinear 

phase of slackening cable, dep lopen t  and con t ro l  problexs, and r?,=g other  

problem areas .  
41 



15.  A e r o e l a s t i c i t y  E f f e c t s  of I n f l a t a b l e s  

Severa l  new and d i f f e r e n t  veh ic l e s  have been proposed f o r  achieving re-  

e n t r y  and recovery from o r b i t a l ,  sub-orbi ta l  and super-orbi ta l  f l i g h t ,  ( s s e  

Figure 20). Generally, a  bas i c  requirenent  of such vehic les  i s  t h a t  t h e y  be 

capable of being folded,  o r  stowed, so a s  t o  occupy a  rninirn~m of space u n t i l  

t h e  t ime of deploynent. They ~ u s t  a l s o  be l i g h t  i n  wei-ght in order  t o  

r ep resen t  only  a  small  f r a c t i o n  of t h e  mission payload. Due t o  t h e  f l e x i -  
1 

b i l i t y  of i n f l a t e d  boonis and f a b r i c s ,  and due t o  nonl inear  c h a r a c t e r i s t i c s  

a,?d unknown p roper t i e s  of mat$r ia ls ,  t h e  a e r o e i a s t i c  e f f e c t s  of i -n f l a t ab les  

a r e  hard t o  a s c e r t a i n .  For c o n t r o l  of t h e  veh ic l e  during deployment, maneu- 

ver ing  and laxding, t h e  i n t e r a c t i o n  of cable  v i b r a t i o n ,  veh ic l e  movements, 

and f lexi 'oi l . i ty  of t h e  inf la ta .b ln  s t ~ u c t u r e  skould be well. e s t ab l i shed .  A 

concerted ana l j r t i ca l  e f f o r t  and comprehensive l abora to ry  and f l i g h t  t e s t  

pro~rz-3 ,  a r e  needed t o  a s s c r e  r e z s o ~ a b l e  r e s u l t s .  

Figure 20. Paragl ider  with Gemini Capsule 



16.  inpac t  of Spacecraft  i n  IIater 

T7ost spacec ra f t  a r e  of complicated conf igura t ion ,  cons i s t ing  of sandwich 

o r  sk in-s t r inger  o u t e r  s h e l l s  and pressur ized  i n n e r  s h e l l s  wi th  crew s e a t s ,  

i n  t h e  case  of manned c r a f t .  For decades t h e  problem of impact of simple 

s h e l l s  has been under i n v e s t i g a t i o n  by many authors ,  wi th  no remarkable 

r e s u l t s .  The complex s t r u c t u r a l  configurat ion,  coupled with l a r g e  degrees 

of freedom and t h e  h;rdrod,ynamic i n t e r a c t i o n  of waves wi th  s h e l l s ,  i nc reases  

t h e  d i f f i c u l t y  of predict i r ig t h e  s t a b i l i t y  of spacec ra f t  and t h e  dynamic 

loads  associa.ted wi th  var ious  landing speeds. N o d l y ,  naval  a r c h i t e c t u r a l  

procedures were used t o  determine spacec ra f t  f l o t a t i o n  c h a r a c t e r i s t i c s  and 

s t a t i c k l  s t a b i l - i t y .  F a i r l y  good c o r r e l a t i o n  can be obtained f o r  s t a b i l i t y  

c h a r a c t e r i s t i c s ;  however, s t r u c t u r a l  response, load-time h i s t o r y ,  and veh ic l e  

i n t e g r i t y  a r e  ha.rd t o  p red ic t  wi th  pure ly  a n a l y t i c a l  methods. A b e t t e r  

md.erstading of t h e  problem could be der ived  from a three-pronged approarch: 

1 )  a d d i t i o n a l  t h e o r e t i c a l  s tudy of s h e l l  impact and t h e  

hydrodynanic i n t e r a c t i o n  of waves, 

2)  l abora to ry  t e s t s  on components and models, and 

3 )  semi-empirical formulae from f u l l - s c a l e  t e s t s .  

!:ater inpac t  t e s t i n g  of a "bo i l e rp la t e"  Apollo capsule i s  shown i n  

Figure 21. S?.ID i s  developing t h e  Apollo Command lfodule under t h e  d i r e c t i o n  

of Ihnned Spacecraf t  Center.  





17.  Inzpact of Spacecraft  -- of S h e l l  Configuration on Land 

The two extremes of spacec ra f t  landing envirorment a r e  concrete and 

sand. A concrete landing surface  i s  probably t h e  e a s i e s t  t o  s imulate,  

a n a l y t i c a l l y  and experimentally, s ince  t h e  c o e f f i c i e n t  of f r i c t i o n  i s  

e s s e n t i a l l ~ r  constant  and l i t t l e  o r  no k i n e t i c  energy i s  absorbed by t h e  

concrete.  Landings i n  sand a r e  c o m ~ l i c a t e d  by t h e  unknown con t r ibu t ion  

t h a t  sand makes t o  t h e  t o t a l  energy absorbed. During t h e  alightment,  t h e  

spacec ra f t  w i l l  undergo compression, displacement, and shear  through t h e  

sur face .  A l l  of t h e s e  f a c t o r s  con t r ibu te  t o  t h e  removal of energy from 

t h e  moving body, a l o n ~  1 6 t h  t h e  a c t i o n  of t h e  s p a c e c r a f t ' s  energy 

absorpt ion  device.  C, t y p i c a l  device, employing a i r  bags, i s  shown i n  

Figure 22. A s  wi th  impact on water,  t h e  p red ic t ion  of djrnar?iic loads  ir, 

var ious  p a r t s  of t h e  complicated s t r u c t u r e  of a s ~ a c e c r a f t  ir.~pactin); on 

land  i s  a very d i f f i c u l t  t a s k .  Comparison of t y p i c a l  a n a l y t i c a l  m-d 

experimental ground alightrnent acce le ra t ion  h i s t o r i e s  a r e  shcwn i n  

Figure 23. Interse a n a l y t i c a l  s t u s i e s ,  s c a l e  model and l abora to ry  t e s t s ,  

a2d f u l l - s c a l e  t e s t s  a r e  necessary f o r  a b e t t e r  understandin? of t h e  problem. 
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19. L u c e r  tan din^ Ot,ructural 3paz ics  ------ 
% "  theorin.; of l u n a r  -eclapy hasre been pos tu l a t ed  by many au tho r s .  

n ,he t m ~ e  c h a r a c t e r i s t i c s  of t h e  1i:m.r su r face  are  s t i l l  a ma t t e r  of conjec- 

t u r e .  The :?anger and Surveyor Progravs ,%re intended t o  yrovide a b e t t e r  

understanding c f  t h e  forma.tion. The unknovn f a c t o r s  of  2eology and topo- 

graphy, a s  w e l l  a s  t h e  e l a s t i c  and p l a s t i c  e f i ' ec t s  of  mult iple- legged 

landings ,  rf~alce l c n a r  lar,dir?g dynarr.ics a d i f f icu! t  t a s k .  F i g w e  24 shows a 

r e sea rch  ricdel f o r  u se  i-n d;jr,arnic anal:-r;S s of  ? c ~ ~ e r l - v e h j  c l e  l a r d i n g s  . 



Figure 24. Frangible and F r i c t i ona l  Landing Model 
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