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The vibration and acoustic environments of the S-IV and S-IVB Stages of the 

Saturn vehicle are summarized. A brief review of techniques used t o  predict 

the dynamic environments of the S-IV and S-IVB vehicles is presented. This 

revieu includes discussions on the prediction of rocket exhaust noise, boundary 

Layer noise, sinusoidal vibrations, and random vibrations for  the S-IV and 

S-IVB vehicles. I n  addition, sine-random vibration conversions are given. 

Various prediction techniqws are examined and compared. Predictions of S-IV 

and S-IVB rocket exhaust noise are cmpared v i th  f i e ld  measurements. Mfferent 

methods of acoustic/vibration correlativity are uti l ized t o  provide environ- 

mental vibration levels for  the S-IV and S-IVB vehicles. A curve of classical  

vibration response t o  acoustic loading i s  given for use in the correlation of 

acoustic levels with structural  vibration levels. The prediction of both 

sinusoidal and randcan vibrations is presented in  considerable deta i l  t o  pro- 

vide i l lus t ra t ive  examples. Typical tables of computations are included. 
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A primary design consideration f o r  the Saturn S -N and S-IVB Stages is  

the e f f ec t  of acoustical and vibrat ional  excitations on the vehicle s tructure 

and on del icate airborne equipment. The impor8ance of this consideration i s  

enhanced by noting the severe aynamic environments which are  produced by the 

high-thrust rocket systems of the Saturn Vehicle. I n  addition, at tent ion 

must be given t o  the possible damaging ef fec ts  of aerodynamic noise which 

resul t s  from turbulence i n  the boundary layer; this noise approaches i ts  

highest l eve l  during the maximum Q (dynamic pressure) phase of the f l i g h t  

mission. I n  v i e w  of the high-thrust rocket systems and the boundary layer  

noise excitations, there ex is t s  a fundamental requirement f o r  an adequate 

defini t ion of the dynamic environments of the S-IV and S-IVB Stages of the 

Saturn Vehicle. The defini t ion of these environments i s  continually being 

up-dated; therefore, t h i s  paper presents only an interim report.  The defini-  

t i on  of the S-IV and S-IVB dynamic environments i s  being modified and im-  

proved progressively by f i e l d  measurements and more refined prediction studies 

The acoustic and vibrat ional  environments of the S-IV and S-IVB Stages 

of the Saturn Vehicle a re  discussed i n  t h i s  paper. Predlctions and measure- 

ments of these dynamic environments a re  presented. Predicted acoustic time 

h is tor ies  a re  given f o r  the ear ly  phases of the S-IV and S-IVB missions. 

These time h is tor ies  a re  compared with acoustic measurements from two f l i gh t s  

of the Saturn I Vehicle. Prediction techniques f o r  locket exhaust noise and 

boundary layer  noise a re  discussed br ie f ly .  Predictions of acoustic spectra 

fo r  s i x  S-IV engines (RL-lo), without diffuser  attenuation, a re  given. 

Measurements of acoustic levels  during f i r ings  of the S-IVB engine are  pre- 

sented and compared with predicted levels. 

Different methods of acoustic/vibration corre la t iv i ty  a re  u t i l i zed  t o  

provide environmental vibration levels  f o r  both the S-IV and S-IVB Stages. 

Various correlat ion techniques are compared and evaluated. A curve of 

c l a s s i ca l  vibration response t o  acoustic loading is  given fo r  use i n  the 

correlat ion of acoustic levels  with s t ruc tura l  vibration levels. ~ c o u s t i c /  

vibrat ion correlation methods are  used t o  determine both sine and random 

vibration environments. Also, sine-random vibration conversions are used 

t o  es tab l i sh  random vibration levels  fo r  the S-IVB Stage. 



SATURN CoNFIGmIoNS 

The S-IV, powered by s i x  RL-10 engines, i s  the second stage of the 

Saturn I; and the S-IVB, powered by one 5-2 engine, is  (1)  the second stage 

of the Saturn IB and (2)  the t h i r d  stage of the Saturn V (see Figure 1 ) .  

The primary mission of the Saturn I configuration i s  unmanned o rb i t a l  f l i gh t s  

around the earth. The SaLurn IB configuration has as i ts  primary mission 

the support of the basic Apollo mission by early tes t ing  of Apollo spacecraft 

modules i n  ear th  o rb i t a l  enviroments. The Saturn V i s  a three-stage vehicle 

whose primary mission i s  lunar manned operations. 

THE ACOUSTIC ENVIROlWNTS 

The structure and the equipment on the S - N  and S-IVB Stages w i l l  be 

exposed t o  acoustic forcing functions tha t  are variant with time and the 

mission profi le .  The following l i s t  of forcing functions presents same of 

the acoustic sources tha t  must be considered during the Saturn program 

(reference I)  : 

rocket engine noise 

anc i l la ry  equ ipen t  

Laminar boundary layer  noise 

turbulent bounctary layer  fluctuations 

turbulent wakes (protuberated) 

base pressure fluctuations 

cavity resonances 

secondary acoustic sources 

Usually, the sound f i e l d  of the rocket engine i s  the most important 

source of vibrhtion, and the bour~dary layer noise ranks  second i n  source 

severity; hawever, preliminary data show that the boundary Layer noise on 

the S-N and S-IKf3 Stages i s  equal t o  or  greater  than the rocket engine 

noise a t  same locations. This condition i s  being investigated; addit ional  

measurements will be made during Saturn f l i gh t s .  During the launch phase 

of the Saturn Vehicle, the tremendous noise generated by the rocket engines 

i s  transmitted through the  atmosphere and ref lected by the ground plane 

around the space vehicle. Since the rocket n d s e  is essent ia l ly  randcan and 

'bhi te" i n  nature, it creates resonant responses of skin panels and struc-  

tures.  The magnitude of t h i s  exci tat ion depends upon the frequency spectrum, 

the amplitude, the space correlation of the noise, ana the mechanical imped- 

ance of the structure. The resul t ing vibrat ional  energy i s  transferred 



throughout the vehicle t o  substructure and equipment. Some of the panels 

ac t  as secondary noise sources and radiate  acoustic energy in to  the vehicle's 

compartments. I n  turn, some of these bays become semi-reverberant chambers 

t o  maintain f a i r l y  high acoustic levels .  Rocket engine noise, re f lec ted  

from the ground plane, dominates the  Saturn environment f o r  the  f i r s t  few 

seconds of f l i g h t  u n t i l  the Saturn Vehicle r i s e s  a distance equivalent t o  

approximetely 50 ex i t  nozzle diameters. After the Saturn Vehicle leaves the 

launch pad, it begins t o  gain velocity; and then the  e f fec t  of vehicle motion 

becomes apparent un t i l ,  on approaching Mach one, the rocket noise does not 

propagate t o  the vehicle. As the Saturn Vehicle moves with increased veloci ty 

through the  atmosphere, boundary layer  noise becomes the dominant forcing 

function. Originally, the boundary layer  noise i s  extremely low and i s  masked 

during the launch phase by the  intense rocket engine noise, and i s  not propa- 

gated i n  any degree u n t i l  the sonic speed range i s  reached. The boundary 

layer  noise i s  a function of dynamic pressure and other related aerodynamic 

parameters such as the  vehicles at t i tude,  and configuration; t h i s  noise reaches 

i t s  highest l eve l  during the  maximum Q phase of the f l i g h t  mission. 

Figure 2 summarizes the acoustic environment of the S-IV and S-TVB Stages 

during the  f i r s t  160 seconds of the f l i g h t  mission. This chronological h i s -  

to ry  of the major acoustic sources depicts (1)  the sound pressure levels  pre- 

dicted f o r  the  S-IV and S-IVB Stages and (2) the sound pressure levels  measured 

during Saturn I f l i gh t s  SA-3 and SA-4. The launch phase, the diminution 

immediately a f t e r  launch, the increase i n  l eve l  t o  the  maximum dynamic pressure, 

and the f i n a l  decline t o  negligible noise levitls a re  included i n  t h i s  summation. 

This s e t  of curves shows that the boundary layer  noise i s  equal t o  or  greater  

than the rocket engine noise during the f l i g h t  mission. These boundary layer  

noise levels  are  indicat ive of l oca l  flow conditions with large protuberances, 

and may be much l e s s  (approximately 14 db) on cleaner areas of the S-IV and 

S-IVB Stages where undisturbed boundary layer  flow occurs. Four individual 

time h is tory  curves a re  displayed i n  Flgure 2: 

1. the predicted S-IV acoustic time his tory 

2. the  predicted S-IVB acoustic time h is tory  

3. acoustic measurements obtained during the  Saturn SA-3 f l i g h t  

i n t e rna l ly  on the S I  Stage 

4. acoustic measurements obtained during the Saturn SA-4 f l i g h t  

external ly on the S-IV a f t  interstage 



SATURN CONFIGURATIONS 
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A l l  of these curves show a reasonable likeness during the launch phase. 

With the logica l  exception of the SA-3 data, the curves a l so  show good 

agreement during the maximum Q phase of the mission. That is, the SA-3 

microphone was located on the lower S I  Stage, was an in terna l  measurement, 

and consequently, the SA-3 data should not correlate  well with the  other data 

during the maximum Q phase. Since the microphone on the S I  Stage i s  the 

closest  acoustic measurement t o  the S - N  Stage, the SA-3 data a r e  presented 

only f o r  general in teres t .  The microphone on the fourth Saturn f l i g h t  (SA-4) 

was mounted f lush  with the skin of the S-IV aft interstage i n  a disturbed 

flow region. Incidentally, the S-IV Stages on the SA-3 and SA-4 f l i gh t s  were 

dummy stages. The highest boundary layer  noise levels  on Figure 2 a re  those 

measured during the SA-4 f l i gh t .  As a f i r s t  approximation, these fluctitations 

a re  assumed proportional t o  the freestream pressure: 

OAFPL or  OASPL 20 log Q + K db ( 1  

where OAFPL i s  the l eve l  of the overal l  pressure fluctuations a t  the surface, 

Q i s  the freestreern dynamic pressure i n  lbs/sq.ft., and K i s  a fac tor  which 

varies  with aerodynamic f l ow  parameters. K i s  a function of the vehicle's 

al t i tude,  a t t i tude ,  velocity, and configuration. The value of K w i l l  be 

approximately 86 f o r  an aerodynamicaUy clean configuration with a zero angle 

of attack. As drag increases, the value of K increases. Recent wind tunnel 

t e s t s  performed at Douglas indicate t ha t  space vehicles, such as the Saturn, 

Kith large protuberances, have related K factors  as great as l l 0 .  A K value 

of 100 was used t o  determine the S-IV and S-IVB predictions on Ngure 2. 

The protuberances are external vehicle it- such as wiring ducts, f u e l  ducts, 

ullage rockets, and the Like. 

Predictions of rocket engine noise from s i x  RL-10 engines, without 

diffusers, a re  shown i n  the three-dimensional display of Ngure 3. The 

sound pressure levels  are given as a function of octave bands and location 

forward of the engine nozzles. These levels  a re  extremely conservative 

since the S-IY Stage is  s t a t i c  (or acceptance) f i r e d  with 27 foot diffusers 

which exhaust against a deflector plate; therefore, these levels  should be 

lowered considerably for  S-IV s t a t i c  f i r ings .  Two different  prediction 

methods, described i n  Reference &, were used t o  calculate the noise from 

the RL-10 engine. The 15,000 pound thrus t  engine produces a sound power 

l eve l  of approximately 181 db overal l  ( re  10 - l3  watts).  The value of 181 
db was found by using an empirical equation which was based on data f r m  

rockets i n  the 1,000 t o  l30,000 pounds thruet  range (~e fe rence  3): 



= 78 + u. 5 loglo Wm 

where Wm = mechanical pover of jetstream i n  watts, 

'm = 0.676 tv = 0.676 (t2g)/w, 

with V - (tg)/w = gas velocity a t  nozzle exi t  i n  fps, 

t = t h m t  i n  pounds, 
2 g = acceleration due t o  gravity = 32.2 ft/sec , 

u = weight flow i n  lb/sec 

then PWL = 78 + l3.5 log 0.676 t 3  
W 

The empirical relationship of equation (2) remains a f a i r l y  reliable 

prediction of the t o t a l  acoustical power of conventionally fueled rockets 

a t  sea-level operations (Reference 4). 

Acoustic data obtained during t e s t  stand firings of the S-IVB engine, 

the 5-2, a t  Rocketdyne are summarized in Ngure 4. The average sound pressure 

levels fran four t e s t  f ir ings are plotted as a function of octave bands and 

distance forward of the nozzle exi t  plane. Acoustic data, fran Figure 4, for 

the a f t  s k i r t  are regLotted i n  Figure 5 and compared with acoustic levels 

which were determined by four different prediction methods: 

1. WADC TR 58-343 (~eference 5) 

2. WADC TR 57-354 (Reference 3 ) 

3. Modified TJADC TR 58-343 (~eference 6 )  

4. Scaled Thor data 

The highest levels on Figure 5 are displayed by the measured 5-2 data, 

especially in  the second through f i f t h  octave bands. The scaled Thor data 

and the modified WADC data show a reasonable agreement with the measured 

da ta  a t  the higher frequencies. Follaring are the original measured data 

on the Thor booster: 

Octave Band Sound Pressure Level 

db 
141 
144 
146 
147 
146 
145 
144 
143 
154 
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MEASURED S-IVB ENGINE 
ACOUSTIC SPECTRA 

FIGURE 4 



Using equation (2), the sound parer levels  were found t o  be 199 db 

r e  10-13 watt f o r  the Thor and 198 db r e  watt f o r  the 5-2 engine 

a t  sea level .  Then, the sound power l eve l  d i f f e ren t i a l  of one db was 

subtracted from the or ig ina l  Thor data. These lower levels  are p lo t ted  

on Figure 5 as the scaled Thor data. 

S-IV VIBRATION PREDICTIONS AIJD MEPSUREbBY3 

Saturn rocket engine and boundary layer  noise has, In general, a 

random distr ibut ion with broad spectra. As these acoustic excitations i m -  

pinge on the S-IV Stage they induce random vibrations (with variant band- 

widths) on the vehicle s tructure.  This condition of randomness varies 

throughout the  vehicle as the spectra a re  influenced by s t ruc tu ra l  f i l t e r s  

t ha t  create aominant peaks a t  response frequencies. Also, the random vibra- 

t ions a re  assumed t o  have instantaneous accelerations ( in  any frequency band) 

tha t  exhibi t  normal or  Gaussian distributions. Perhaps, the most severe 

vibrat ion environment occurs during the maximum Q pksee of f l i g h t  f o r  a 

re la t ive ly  short  period of time. h e r  vibration levels  occur on the S-IV 

Stage during the acceptance ( s t a t i c )  f i r ings  which are conducted on each 

S-IV Stage %t the Sacramento, California f a c i l i t y  of the Douglas Aircraft 

Cmpany, Inc. The vibration levels  during the S-IV acceptance f i r i ngs  a re  

grea t ly  reduced by the use of 27 foot diffusers  which attenuate the acoustic 

excitations from the RL-10 engines. In addition, the S-IV Stage i s  supported 

by i so la tors  during the acceptance f i r ings  t o  minimize the dynamic feedback 

from the t e s t  stand. Hence, the vibration environment of the S-IV Stage 

during the  acceptance f i r i ngs  i s  primarily mechanically induced. Furthermore, 

it i s  highly probable tha t  the vibration environment of the acceptance f i r i ngs  

closely simulates the vibration environment during f l i g h t  when the RL-10 

engines a re  f i r ing .  In order t o  es tab l i sh  the vibration environment of the 

S-IV acceptance f i r ings,  vibration memurements were recorded during s t a t i c  

f i r i ngs  of the S-IV-5 Stage a t  Sacramento. Sme of these data are  presented 

i n  t h i s  report  and compared with vibration predictions based on the conser- 

vat ive acoustic levels  of Ngure 3. 

Prior  t o  discussing these vlbration comparisons, a br ie f  description i s  

given of acoustic/vibration correlation techniques which are used i n  this 

paper t o  predict  some of the S-IV vibration levels. Several investigators 

have attempted t o  es tab l i sh  the relationship between the acoustic forcing 

function and the resul tant  vibratory response. This has l e d  t o  the estab- 

lishment of vibrat ion prediction techniques which are  founded on acoustic/ 
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vibration correlat ivi ty.  These prediction methods have used empirical 

information as t h e i r  basis .  Much remains t o  be desired on the accuracy of 

these various methods. The f a u l t  Lies i n  the f ac t  that these prediction 

methods are  based on general data; consequently, these methods may not pro- 

vide optimum predictions f o r  specif ic  cases. 

Another drawback of most prediction techniques i s  the f a i lu re  t o  

account f o r  s t ruc tu ra l  resonances caused by s t ruc tura l  f i l t e r s .  To explain 

further, predictions of randm vibrations should display daminant peaks at  

response frequencies. Hwever, most predictions shaw broad spectra which 

are  i n  general agreement with typica l  vibration t e s t  specifications. This 

leads t o  c o n s e ~ a t i v e  vibration t e s t  l e v e h  which may o r  may not be Jus t i -  

fied! This depends on the s t ruc tu ra l  configuration. Relatively so f t  s t ruc-  

tures with many response frequencies should be tes ted  t o  conservative speci- 

f icat ions with broad spectm. In  contrast,  strong primary structure x i t h  a 

high natura l  frequency will have a dominant response peak. Then, the environ- 

mental vibrations on such a structure a re  best  represented o r  estimated by a 

peaked vibration spectrum. Thus, i dea l  predictions Should be based on actual  

knowledge of the s tructure being investigated. F'irst, analyt ical  techniques 

can be used t o  determine response spectra of s tructures.  Secondly, response 

frequencies of s tructures can be determined by actual  measurements. Finally, 

it can be expected that, within t h i s  decade, mechanical admittance o r  imped- 

ance measurements w i l l  be Kfdely used t o  define s t ruc tura l  response spectra 

and t o  determine t ransfer  functions. 

One of the popular empirical methods used t o  predict vibration levels  

is  described i n  Reference 7. Reference 7 provides curves f o r  predicting 

vibrations induced by acoustic e ~ c f t a t i o p s  . Predictions using Reference 7 

data can be determined fo r  different  confidence levels. However, these 

resul t ing vibration spectra a re  broad band such as those found i n  typica l  

t e s t  specifications. Two additional curves f o r  predicting acoustically 

induced vibrations are  given i n  Figures 6 and 7. The correlation data 

of Figure 6 are  based on Minuteman, Jupiter ,  Titan, and Skybolt measure- 

ments col lected by E. F. Winter (~e fe rence  8). The acoustic/vibration 

c o r r e b t i v i t y  of Figure 7 was canpiled by the author of this paper. The 

data i n  Figure 7 a re  representative of r i g i d  primary structure with a 

dcminant and high (say approximately 700 t o  1200 cps) response frequency. 

These data tend t o  follow a c lass ica l  transmissibility curve. 
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A large quantity of useful vibrat ion data was obtained during two 

acceptance f i r i ngs  of the  S-IV-5 Stage. The presentation of all the vibra- 

t i o n  data from the  S-IV-5 f i r i ngs  is  beyond the  scope of this paper. The 

accelerometer locations during the S-N-5 acceptance f i r i ngs  a t  Sacramento 

a r e  shown i n  the  sketch of Figure 8. D a t a  froan only three accelerometer 

locations a r e  given i n  this report.  Acceptance f i r i n g  vibrations a t  t he  

gimbal point, the  thrust cone, and the base of the telemetry rack a r e  dis- 

played i n  Figures 9, 10, and U. I n  these three figures, the acceptance 

f i r i n g  vibrations a re  compared with predictions of acoust ical ly induced 

vibrat ions which are  based on the  RL-10 engine data of Figure 3 .  These 

predictions were established by using data from Figures 3, 6, and 7 of 

this paper and data f r m  Reference 7. Four curves a re  shawn i n  each of 

the graphs of figures 9, 10, and U: 

1. vibrat ion levels  determined by the  method of reference 7 (95$ 

confidence, Smith and Mahaffey) 

2. vibrat ion levels  determined by using the data i n  Figure 6 of 

this paper 

3 .  vibrat ion levels  determined by using the  data on the  c lass ica l  

curve of Figure 7 
4. measured vibrat ion levels from the acceptance f i r i ngs  of the  

S-IV-5 Stage a t  Sacramento, Cal ifornia 

Three tables  sharing typ ica l  data f o r  each of the prediction methods 

a r e  given i n  addendum A which accompanies t h i s  paper. 

The predicted vibrat ion leve ls  i n  Figures 9, 10, and U are  based on 

the  acoustic leve ls  shown i n  Figure 3; consequently, these predicted vibra- 

t ions  a re  much greater  than the  ac tua l  acoust ical ly induced vibrations on 

the S-IV acceptance f i r ings .  Since the ac tua l  S-IV acceptance f i r i ngs  a r e  

made with diffusers ,  the s t a t i c  f i r i n g  acoustic levels  a re  much lower than 

the levels  of Figure 3. I n  turn, the acoust ical ly induced vibrations during 

the s t a t i c  f i r i ngs  a re  nuch less  than the predictions i n  Figures 9, 10, and 

11. Whereas the S-IV acceptance f i r ings  a re  made with diffusers  which 

a t ten tua te  most of the sound, the  vibrations on the S-IV Stage during the  

acceptance f i r i ngs  a re  almost en t i r e ly  mechanically induced. A study of 

Figures 9, 10, and 11 shows tha t  the mechanically induced vibrations during 

the  acceptance f i r i ngs  a re  approximately equal t o  predicted acoust ical ly 

induced vibrat ions from six unattenuated RL-10 engines. Originally, these 

f igures  were prepared t o  show the d i f f e r en t i a l  between mechanically induced 
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vibrations (acceptance f i r ing  data) and acoustically induced vibrations 

(the predicted vibrations). However, the predicted and the measured 

vibrations show an unexpected agreement which indicates that  the S-IV 

engine/vehicle transfer function results i n  relat ively high mechanically 

induced vibrations. This transfer function includes the effects of 

multiple engine dynamics on the S-N structure. Also, some of the 

mechanically induced vibrations may be at tr ibuted t o  accessories on the 

s ix  RL-10 engines. This subject of mechanicdly and acoustically induced 

vibration on the S-IV Stage i s  an intereeting one that requires further 

analysis. This relationship w i l l  be bet ter  defined as microphone measure- 

ments and additional vibration measurements became available from future 

S-IV acceptance f irings . 
The next four figures, 12 through 15, show predictions of the acous- 

t i c a l l y  induced vibrations during launch and f l ight  of the S-IV Stage 

(~eference 9). In each figure, an envelope has been drawn over the 95$ 

confidence level  (smith and Mahaffe~) t o  provide a conservative t e s t  level. 

This t e s t  level  i s  applied as a one minute per octave sinusoidal logarithmic 

sweep. With t h i s  sweep rate, a t e s t  specimen i s  exposed t o  each resonance 

for  approximately 35 seconds (~eference 9). Predicted vibrations on the 

extreme aft S-N interstage are plotted on Figure 12. The vibration environ- 

ment of Figure 12 i s  based on wind tunnel data for  the maximum Q phase and 

on SI acoustic data for  the l i f t -off  phase. Both the maximum Q and the 

l i f t -o f f  predictions of Figure 12 were determined by using the data frcan 

Reference 7. The vibration environments of the a f t  interstage ( ~ i g u r e  13 ), 

the thrust  structure (Figure lk) ,  and the forward interstage ( ~ i g u r e  15) 

are based on acoustic data which were obtained from the Saturn SA-4 f l igh t  

and from SI  Stage s t a t i c  f ir ings.  Figures 13, 14, and 1 5  display cmparative 

vibration levels which were obtained by using the data of Figures 6 and 7 

of th i s  paper and the data from Reference 7. Curves A, C, and D display a 

reasonable agreement. The best agreement i s  noted near the response frequence 

of the structure where curves C and D peak. The poorest correlation can be 

found a t  the lower frequencies where the broad spectrum of curve A exists. 

Curve A i s  typical  of specifications which provide overly conservative t e s t  

levels. The reason for the difference i n  the low frequency levels i s  probably 

due t o  the fact that  curve A i s  an envelope of vibration levels of l ight  

components attached t o  l igh t  flexible structure. Curves B, C, and D are con- 

sidered t o  envelope vibration levels measured on heavy primary structure. 
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S-rvB VIBRATION PRFDICTIONS 

An exploded view of the Saturn S-IVB Stage i s  presented i n  Figure 16. 

Similar t o  the S - N  dynamic environment, the S-IVB vibration environment 

has, i n  general, a randm distr%bution with broad spectra. The banWdth  

of these random vibrations varies throughout the vehicle as the spectra 

a re  influenced by s t ruc tura l  f i l t e r s  t ha t  create dominant peaks a t  response 

frequencies. Furthemore, the instantaneous accelerations are  assumed t o  

have normal distr ibut ions o r  s l i gh t  modifications of the normal distribution, 

and the  corresponding peaks are  assumed t o  be distr ibuted according t o  the 

Rayleigh l a w .  The S-IVB vibrations vlU be signif icant  during the Uf t -o f f  

phase, the maximum Q phase, and the 5-2 englne f i r i ng  phase. The l i f t -o f f  

vibrations and the maximum Q vibrations of the S-IVB Stage w i l l  be s imilar  

i n  severi ty t o  the S-IV l i f t - o f f  and maximum Q vibrations. The vibrations 

during the S-IVB acceptance f i r ings  w i l l  be greater  than the vibrations 

during the S-IV acceptance f i r i ngs  because of the more severe acoust ical  

environment. Likewise, the mechanically induced vibrations from the 5-2 

engine during S-IVB f l igh t  w i l l  be greater  than the f l i g h t  vibrations from 

the RL-10 engines on the S - N  Stage because of the increased engine s i ze  

and thrus t .  Since the vibrations during the S-IVB acceptance f i r i ngs  w i l l  

rank high i n  importance, predictions have been made of acausticsllly induced 

vibrations on the S-IVB s t a t i c  f i r ings .  

These predictions were established by using data f m  Figures 4, 6, 7, 
and 17 of t h i s  paper and data frm Reference 7. Figure 17 of t h i s  paper was 

original ly presented i n  Reference 10. This f igure is useful i n  proposal 

stages and early design stages where l i t t l e  is  known about a vehicle. To 

use t h i s  figure, only an overal l  sound pressure l eve l  is  required; t h i s  

technique provides a reasonable "ball-park" estimation. Random vibratton 

spectra a re  given fo r  f ive  different  overal l  sound pressure levels  i n  

Figure 17. Only random vibration predictions are  given f o r  the S-IVB accept- 

ance f i r ings .  Predicted random vibration levels  fo r  the S-IVB acceptance 

f i r i ngs  a re  given i n  Figures 18 and 19. Mve curves a re  shown i n  each of the 

graphs of Figures 18 and 19: 

1. vibration levels  determined by the methods of Reference 7 (95% 

confidence, Smith and -fey) 

2. vibration levels  determined by the  method of Reference 7 (6@ 

confidence, Smith and Mahaffey) 

3 .  vibration levels  determined by using the data i n  Figure 6 of t h i s  

Paper 
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4. vibrat ion levels  determined by using the data on the c l a s s i ca l  

curve of Figure 7 

5. vibrat ion levels  determined by using the data of Figure 17 

Three tables sharing typica l  data on three of the prediction methods 

a re  given i n  addendum B of t h i s  paper. For additional information on 

predicting randm vibrat ion levels  from Figure 7 and on sine-random con- 

versions, the reader i s  referred t o  Reference 1. All of the curves labeled 

"Smith and Mahaffey" and "E. F. Winter" were determined by f i r s t  finding 

sinusoidal vibration levels  and then converting t o  random vibration levels  

by using the following equation from Reference 1: 

G = 0.174 ( ~ p ) *  

f 
(3 1 

where G = mean squared acceleration density or  parer spectral  density i n  

g2/cps, + i s  the peak applied sinusoidaJ. vibration, and f i s  the frequency 

of resonance. 

A reasonable correlat ion is  noticed on Figures 18 and 19. I n  Figure 

18, the  c h s s i c a l  curve and the E. F. Winter curve display an excellent 

agreement. Also, the Smith and Mahaffey 9596 curve and the  Modified Smith 

and Mahaffey curve are i n  good agreement. The main difference i s  i n  the 

frequency r a g e ;  this difference i s  a natural  resu l t  of the two different  

techniques. The predicted randcan vibration levels  of the S-IVB forward 

s k i r t  (Figure 19) a re  l e s s  than the predicted vibration levels  on the a f t  

s k i r t .  I n  Figure 19, all of the curves, except the Smith and Mahaffey 6 6  
curve, cmpare very well. The predictions i n  Figures 18 and 19 provide 

useful  vibrat ion levels  which es tabl i sh  a vibration gradient fo r  the S-IVB 

Stage, and which are  currently being used t o  determine S-IVB vibration 

t e s t  levels .  

This paper has presented a br ie f  review of the acoustic and vibration 

environments of the S - N  and S-TVB Stages of the Saturn Vehicle. Only a 

fragment of the available data was covered i n  t h i s  interim paper. Pre- 

dictions and measurements of the acoustic and vibration environments were 

given. Predicted acoustic time h is tor ies  f o r  the ear ly  phases of the S-IV 

and S-IVB missions were presented. These acoustic predictions were campared 

Kith Saturn I f l i g h t  data. Predictions of acoutic spectra f o r  s i x  S-N 

engines (RL-lo), without d i f fuser  attenuation, were given. This presentation 



included a summary of acoustic data from J-2 engine flrings. 

Environmental vibration levels  fo r  both the S-IV and S-IYB Stages vere 

determined by using different  methods of acoustic/vibration correlat ivi ty.  

Comparisons were made of the resul ts  obtained by the different  correlat ion 

techniques. These methods were used t o  determine both sine and randcm 

vibration environments. Vibration data measured during the 8-IV-5 accept- 

ance f i r i n g  were presented and discussed. 

Much work remains t o  be done i n  the defini t ion of the S-IV and S-IVB 

acoust ical  and vibrat ional  environments. More vibration measurements w i l l  

be acquired during s t a t i c  f i r i ngs  and f l i gh t s  of both the S - N  and S-IVB 

Stages. In  addition, microphone measurements w i l l  be obtained. A con- 

tinuous and necessary e f fo r t  is  underway t o  adequately define the acoustical 

and vibrational. environments of the S-I?? and S-IVB Stages. 
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rnDENDUM A 

~cous t i c /v ib r a t i on  co r r e l a t i v i t y  

I. Vibration levels  determined by the method of Reference 7 (smith and 

Mahaffey). The basic  data f o r  the curve (95s confidence, Smith and Mahaffey) 

i n  Figure 9 a r e  given i n  Table I. These curves have been drawn through 

points which were p lo t ted  a t  the geometric mean frequencies (GMF =-) of 

the  octave bands. Octave band widths were used i n  agreement with the method 

of Reference 7. 

Table I 
7 0 %  - . .  

Octave Bands GMF - SPL (a) ' s  ( 0 - e )  5 ' s  (0-peak) 

37.5 - 75 53 137.6 1.4 3.2 

75 - 150 106 138.9 2.5 7.2 

150 - 300 212 140.2 3.7 10.0 

300 - 600 425 140.6 5 0 11.5 

600 - 1200 8 50 139.0 5-2 13 -3 

1200 - 2400 1700 139 5 4.4 10.8 

11. Vibration levels  determined by using the  data i n  Figure 6 of this paper. 

The calculat ions f o r  the E. F. Winter curve i n  Figure 9 a r e  given i n  Table 

I1 f o r  t he  gimbal point  of the S-IV Stage. This curve was determined by 

using the data i n  Figure 6 and the  following basic  relationship: 

20 l og lo  gms = SPL + TF - 20 loglO W ( i n  db re/g) 

where W = surface density i n  l b / f t 2  

TF = t r ans f e r  function (ordinate of Figure 6 )  

SPL = sound pressure l eve l  (db) 

20 log gms i s  i n  db r e  1 g 

Table I1 

20 loglo w = -0.72 

1 2 3 4 5 6 7 8 

Octave GMF SPL TF 3+4 Col. 5-20 
grms g (-peak) 

Band log W i n  db 



111. Vibration levels determined by using the data i n  the classical  curve 

of Ngure 7. The calculations for  the (classical)  vibration levela i n  

Figure 9 are  l i s t e d  i n  Table 111. These vibrations display a dcminant peak 

which is characteristic of r ig id  primary structure. In  th i s  case, a re- 

sponse frequency of approximately 800 cps was assumed. Since the correla- 

t ion  data i n  Figure 7 were obtained from actual 1/3 octave acoustic and 

vibration meas-ents, they are applicable t o  113 octave predictions. 

The octave-band sound press- levels l i s t e d  in  Tables I and I1 were con- 

verted t o  1/3 octave-band sound pressure levels by simply subtracting 

5 db fmm the octave-band sound pressure levels. Table I11 used the 

relationship : 

= SPL + TF ( in  db re 0.lg) 

where SPL = sound pressure level  in  1/3 octave bands (db) 

TF = Transfer function (ordinate of Figure 7 )  

f TF 113 Octave Column 2 + Ratio B peak Col. 5x0.1 
1/3 octave SPL (db ) Column 3 i n  0.1 g i n  g's 
Band db equivalent t o  (0-peak) 



Random Vibration Predictions 

I. Random vibration levels  determined by the method of Reference 7 
(smith and Ma.haffey) and the use of equation (3). The basic data fo r  

the Smith and Mahaffey 95$ curve i n  Figure 18 are given i n  Table N. 

These curves have been drawn through points which were plot ted a t  the 

geometric mean frequencies (GMF = i x )  of the octave bands. 

Octave band widths were used i n  agreement with the method of Reference 7. 

Table IV 

Octave ~ a n d s  GMF SPL (a) 95% g l s  (0-p) 95% $/cps 

37.5 - 75 53 143 4.4 07 

75 - 150 106 148 13.5 930 

150 - 300 212 152 21.8 *39 

300 - 600 42 5 152 27.0 *30 

600 - 1.200 8 50 149 29.5 .2O 

1200 - 2400 1700 144 15.7 03 



11. Random vibration levels  determined by using the data i n  Figure 6 and 

by using equation (3). The calculations f o r  the E. F. Winter curve i n  

Figure 18 are  given i n  Table V. The data i n  Figure 6 and the  following 

basic relat ionship are used: 

20 loglo grms = SPL + TF -20 loglow ( in  db r e  lg) 

Where W = surface density i n  l b / f t  2 

TF = Transfer function (ordinate of Figure 6 )  

SPL = sound pressure l eve l  (db) 

W = 1 lb/ft2; 20 log W = 0 

Table V 

1 2 3 4 5 6 7 8 9 10 
f SPL TF C01.2 C01.4-gms g(o-p) gd =174gz gZ/cps 

CFS db db +Co1.3 20 log 



111. Random vibrat ion levels  determined by using the data i n  the c lass ica l  

curve of Figure 7. The cdclrLations for  the c lass ica l  curve of Figure 18 
are  l i s t e d  in Table VI. These vibrations display a dominant peak which 

is  charac ter i s t ic  of r i g i d  primary structure.  I n  t h i s  case, a response 

frequency of approximately 900 cps was assumed. Since the correlation 

data i n  Figure 7 were obtained from actual  113 octave acoustic and vibra- 

t i o n  measurements, they are  applicable t o  113 octave predictions. Table 

VI uses the  relationship: 

20 10gl~ ('peak/grei) = SPL + TF (in db r e  0.1g) 

where SPL = sound pressure l eve l  i n  113 octave bands 

TF = t ransfer  function (ordinate of Figure 7)  

Table V I  

1 2 3 4 5 6 7 8 9 
f 1/3 TF SPL Spectrum 20 log %e& g pe& g- gz /~ps  
octave db kvel gpe& 0.1 
band Conver- - 

U.L g sion 
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