

SATURN HISTORY DOCUMENT University of Alabama Research Institute History of Science & Technology Group

Date _____ Doc. No. _____

NASA TM X-53555

December 15, 1966

FABRICATION OF PLENUM TANKS BY EXPLOSIVE FORMING AND ELECTRON BEAM WELDING

by L. O. Hamilton, E. R. Coleman, and K. K. Hanchey

NASA

George C. Marshall Space Flight Center, Huntsville, Alabama NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER

TECHNICAL MEMORANDUM X-53555

FABRICATION OF PLENUM TANKS BY EXPLOSIVE FORMING AND ELECTRON BEAM WELDING

By

L. O. Hamilton

E. R. Colemen

and

K. K. Hanchey

MANUFACTURING RESEARCH AND TECHNOLOGY DIVISION MANUFACTURING ENGINEERING LABORATORY RESEARCH AND DEVELOPMENT OPERATIONS

TECHNICAL MEMORANDUM X-53555

FABRICATION OF PLENUM TANKS BY EXPLOSIVE FORMING AND ELECTRON BEAM WELDING

By

L. O. Hamilton

E. R. Coleman

and

K. K. Hanchey

George C. Marshall Space Flight Center Huntsville, Alabama

ABSTRACT

This report presents the results of a program initiated to study the use of explosive forming and electron beam fusion welding techniques in the fabrication of pressurized cryogenic materials containers.

Using these techniques, vessels were successfully formed from 304 stainless steel and X7106 aluminum alloy in the T63 condition.

NASA - GEORGE C. MARSHALL SPACE FLIGHT CENTER

TABLE	\mathbf{OF}	CONTENTS
T T T T T T T T T T T T T T T T T T T	~ ~	• • • • • • • • • •

	Page
SUMMARY	1
INTRODUCTION	1
EXPLOSIVE FORMING OF HEMISPHERICAL BULKHEADS	3
Forming Materials 1. 304 Stainless Steel 2. X7106 Aluminum Alloy 3. Theoretical Thickness Calculations Tooling Forming	3 3 4 5 5 5
1. 304 Stamless Steel	8
ELECTRON BEAM WELDING	12
 Welding X7106-T63 Aluminum Alloy	12 12 13 17 21 21 21
PLENUM TANK PRESSURE TEST DATA	21
CONCLUSIONS AND RECOMMENDATIONS	23
Explosive Forming	23 26
APPENDIX A. EXPLOSIVE FORMING CHARTS	27
APPENDIX B. METALLURGICAL EXAMINATION OF 304 STAINLESS STEEL	41
APPENDIX C. PHOTOMICROGRAPHS OF EXPLOSIVELY FORMED DOME OF X7106 ALUMINUM	44
REFERENCE	54

LIST OF ILLUSTRATIONS

Figure	Title	Page
1.	Plenum Tank Configuration	2
2.	Die Draw Ring Configuration	6
3.	304 Stainless Steel (Before Trimming)	8
4.	X7106 Aluminum (3-Inch Radius)	9
5.	Quality Assurance Measurements After Trim	10
6.	Product Evaluation of Formed X7106 Aluminum (Hardness - Thickness)	10
7.	Secondary Emission Suppressor	13
8.	Electron Beam Weld in 3/4-Inch Thick X7106-T63 Aluminum Plate	14
9.	X7106-T63 Aluminum Bulkhead Trimmed for Welding	17
10.	X7106-T63 Aluminum Bulkhead Before Welding	18
11.	Plenum Tank Welding Fixture	19
12.	Plenum Tank in Fixture Ready for Spot Welds	19
13.	Welding of Plenum Tank	20
14.	X7106-T63 Aluminum Welded Plenum Tank	20
15.	Cross-Section of Tailout as Welded in 304 Stainless Steel Plate	22
16.	Electron Beam Weld in 3/8-Inch Thick 304 Stainless Steel Plate	23
17.	Welded 304 Stainless Steel Plenum Tank (End View)	24

LIST OF ILLUSTRATIONS (Cont'd)

Figure	Title	Page
18.	Welded 304 Stainless Steel Plenum Tank (Side View)	25
A-1	Positions of Arc, Diameter and Depth Measurements Used in Forming Charts	28
B-1	Hardness Measurements of 304 Stainless Steel Explosively Formed Bulkhead	42
B-2	Typical Micro Structures of 304 Stainless Steel as Received	43
B-3	Typical Micro Structure of 304 Stainless Steel as Recieved	43
C-1	Outside View of the Dome Showing the Location of Specimens 1, 5, 6, and 7	45
C-2	Outside View of the Dome Showing the Location of Specimens 2, 3, and 4	45
C-3	Inside View of the Dome Top Showing the Location of Specimens 8 and 9	46
C-4	Photomicrograph of the Outside Surface of the Explosively Formed Dome of X7106-T63 Aluminum Alloy. Specimen Number 5	47
C-5	Photomicrograph of the Outside Surface of the Explosively Formed Dome of X7106-T63 Aluminum Alloy. Specimen Number 6	47
C-6	Photomicrograph of the Outside Surface of the Explosively Formed Dome of X7106-T63 Aluminum Alloy. Specimen Number 7	48
C-7	Photomicrograph of the Outside Surface of the Explosively Formed Dome of X7106-T63 Aluminum Alloy. Specimen Number 9	48

LIST OF ILLUSTRATIONS (Concluded)

Figure	Title	Page
C-8	Photomicrograph of the Explosively Formed Dome of X7106-T63 Aluminum Alloy. The Crack Measures Approximately 0.037 Inch Deep From the Surface. Total Length is Approximately 0.060 Inch Long. Total Width of Specimen is 0.500 Inch. Specimen Number 1	49
C-9	Photomicrograph of the Explosively Formed Dome of X7106-T63 Aluminum Alloy. Specimen Number 2	50
C-10	Photomicrograph of the Explosively Formed Dome of X7106-T63 Aluminum Alloy. Specimen Number 3	50
C-11	Photomicrograph of the Explosively Formed Dome of X7106-T63 Aluminum Alloy. Specimen Number 4	51
C-12	Photomicrograph of the Explosively Formed Dome of X7106-T63 Aluminum Alloy. Specimen Number 5	51
C-13	Photomicrograph of the Explosively Formed Dome of X7106-T63 Aluminum Alloy. Specimen Number 6	52
C-14	Photomicrograph of the Explosively Formed Dome of X7106-T63 Aluminum Alloy. Specimen Number 7	52
C-15	Photomicrograph of the Explosively Formed Dome of X7106-T63 Aluminum Alloy. Specimen Number 8	53
C-16	Photomicrograph of the Explosively Formed Dome of X7106-T63 Aluminum Alloy. Specimen Number 9 ••••••	53

vi

LIST OF TABLES

Table	Title	Page
I.	Mechanical Properties of Forming Alloys	3
п.	Tensile Test Data of Parent 304 Stainless Steel	7
III.	Tensile Test Data of Explosively Formed 304 Stainless Steel	7
IV.	Product Evaluation of Explosively Formed and Trimmed X7106 Aluminum	11
v.	Product Evaluation (Hardness - Thickness) Formed X7106 Aluminum	11
VI.	Weld Properties of X7106-T63 Aluminum	15

PREFACE

A study to investigate the feasibility of fabricating pressure vessels by the explosive forming technique and electron beam welding process was conducted by Hayes International Corporation and the Welding Development Branch, Manufacturing Research and Technology Division, Manufacturing Engineering Laboratory.

Hayes International Corporation, under Manufacturing Engineering Laboratory single support contract NAS8-20083 at Marshall Space Flight Center, conducted the explosive forming study. Principal Hayes International Engineers were L. O. Hamilton and E. R. Coleman, Methods Development Group, Manufacturing Engineering Laboratory Operations.

The welding was accomplished in the Welding Development Branch, Manufacturing Engineering Laboratory, by K. K. Hanchey.

This program was conducted under the technical direction of Mr. P. H. Schuerer, Section Chief, and Mr. C. N. Irvine, Project Engineer, Metals Processing Section, Manufacturing Research and Technology Division, Manufacturing Engineering Laboratory.

TECHNICAL MEMORANDUM X-53555

FABRICATION OF PLENUM TANKS BY EXPLOSIVE FORMING AND ELECTRON BEAM WELDING

SUMMARY

The study of the fabrication of one or more plenum tanks for cryogenic materials by a combination of explosive forming and subsequent electron beam fusion welding is presented in this report. Two materials, 304 stainless steel and X7106 aluminum, were selected for the forming and welding study because of their characteristics at cryogenic temperatures and their weldability.

The 304 stainless steel was successfully formed from 3/8-inch thick material using the metal gathering technique. Work hardening of this material is a unique characteristic and can be used advantageously.

The X7106 aluminum bulkheads were successfully formed from 1-inch thick material, using the metal gathering technique, then heat treated and aged to the T63 condition. This material was desirable because of its strengthweight relationship.

Satisfactory welds resulted using electron beam welding for both the X7106-T63 aluminum and the 304 stainless steel explosively formed bulkheads. Although the 304 stainless steel bulkheads were readily adaptable to electron beam welding, metallurgical analysis indicated the presence of sulfides, considered detrimental to the end use of the cylinder as a pressure tank.

The X7106-T63 aluminum cylinders presented some problems attributed to the out-gassing of the zinc in the alloy and resulting in the emission of a metal vapor, subsequently causing an arc-out. This problem of arc-outs was solved by the fabrication of a shield of the same electrical potential as the workpiece, which was attached to the electron gun. This process is considered to be a major advance in the technique of electron beam welding of aluminum alloys.

INTRODUCTION

Engineering Project Number 5080 was issued on July 6, 1965, to fabricate one or more tanks, intended for use at liquid hydrogen temperature (-423°F), by

a combination of explosive forming and electron beam fusion welding processes. The hemispherical bulkheads of the tanks were to be formed by the explosive forming technique and welded together by the electron beam welding process. The tanks were required to withstand an operating pressure of 3000 psi at room temperature in a vessel 20 inches in diameter, as shown in Figure 1.

FIGURE 1. PLENUM TANK CONFIGURATION

This report deals with the materials selected, tooling, forming techniques and results, and welding techniques and results.

EXPLOSIVE FORMING OF HEMISPHERICAL BULKHEADS

Forming Materials

Two materials were selected for the explosive forming studies: 304 stainless steel and X7106 aluminum. Each of the materials chosen has some desirable characteristics, as evidenced by the following descriptions. The mechanical characteristics of these materials are presented in Table I.

TABLE I. MECHANICAL PROPERTIES OF FORMING ALLOYS

		Before Forming		After Forming					
Material	U.T.S. (psi)	Y.S. (psi)	% Elongation (in 2 inches)	Location	U.T.S. (psi)	Y.S. (psi)	% Elongation (in 2 inches)		
304 Stainless Steel	avg - 80,918 max - 82,949 min - 79,915	avg - 34,517 max - 36,866 min - 33,566	avg 66.3 max - 66.5 min - 66.1	Skirt	avg - 95,958 max - 98,043 min - 93,873	avg - 69,622 max - 71,317 min - 67,927	avg - 38.4 max - 44.2 min - 32.6		
				Dome	avg - 109,103 max - 110,760 min - 107,445	avg 87,713 max - 90,038 min - 85,388	avg - 23.9 max - 25.8 min - 22.0		
				Apex	avg - 111,805 max - 112,037 min - 111,572	avg - 92,097 max - 92,982 min - 91,211	avg - 29,35 max - 29,7 min - 29,0		
* X 7106-T63 Aluminum	* 61,000	* 55,000	* 13	** Trans- verse	avg - 62,550 max - 64,128 min - 60,679	avg - 56,350 max - 57,769 min - 54,391	avg - 15.4 max - 16.4 min - 14.2		
				** Longi- tudinal	avg - 64,250 max - 65,538 min - 62,749	avg - 57,650 max - 58,964 min - 55,976	avg - 14.95 max - 17.4 min - 13.8		

* - Values supplied by manufacturer

** - Material heat treated and aged to a T-63 condition after forming.

1. <u>304 Stainless Steel</u>. A decreasing toughness and a corresponding tendency to brittleness at low temperatures are characteristic of most carbon and alloy steels. Only the 9 percent nickel alloy steel and the chromiumnickel stainless steel fail to exhibit this ductile-brittle transition at very low

temperatures. Therefore, the austenitic (18 percent chromium - 8 percent nickel) stainless steels are inherently well suited for cryogenic service at temperatures from 300° F to -452° F.

Type 304 stainless steel was selected for this operation because it is easy to fabricate and weld, does not require heat treatment after fabrication, and is shock resistant at very low temperatures [1].

2. <u>X7106 Aluminum Alloy</u>. Aluminum alloy is desirable to use in the plenum tank investigation because of its unit weight compared to that of steel. X7106 aluminum, an improved heat treatable Al-Zn-Mg alloy containing zirconium, was chosen. This alloy has the highest level of notch toughness and tear resistance of all the aluminum alloys. Also, it is one of the best aluminum alloys to weld since cracking seldom appears when the proper filler is used. The yield properties of X7106 aluminum alloy are increased when naturally aged, and this alloy exhibits increased stress corrosion resistance compared with other aluminum alloys.

3. <u>Theoretical Thickness Calculations</u>. The following calculations were used in determining the thickness requirements of the materials selected to withstand a test pressure of 3000 psig in a 20-inch diameter vessel.

Formula:

$$G = \frac{Pr}{2T}$$

G = Thickness required

P = Test pressure (psi)

r = Radius, inside tank

T = Yield Strength (psi)

Examples: (No safety factor included)

304 Stainless Steel

G =
$$\frac{3000 \times 10}{2 \times 118,000}$$
 = $\frac{30,000}{162,000}$ = 0.185-inch thick

X7106 Aluminum

G =
$$\frac{3000 \times 10}{2 \times 55,000}$$
 = $\frac{30,000}{162,000}$ = 0.27-inch thick.

Metals normally increase in strength as they cool from 70° F to -423° F, so the calculated thickness required at 70° F may be considered adequate at -423° F.

Tooling

An elliptical die of a 20-inch diameter and an x-y axis relationship of $\frac{x^2}{2} + \frac{y^2}{1} = 1$ was used throughout the forming. A 45-degree draw ring having a 3-inch radius was used on all successful forming tests.

Explosive forming with a draw ring having a 45-degree lead-in angle, without any clamping of the blank, is defined as the "metal gathering" technique. The basic principle of the metal gathering technique is to gather or "bunch" the metal, thereby thickening the metal at the edges and allowing it to flow instead of stretching, thus decreasing the thinout at the apex of the formed part. Figure 2, "Die Draw Ring Configuration," is included in this report for a better understanding of this definition.

Forming

All forming tests were conducted by Hayes International Corporation under Manufacturing Engineering Laboratory single support contract NAS8-20083. The tests were conducted in the MSFC facilities. Appendix A contains the "Explosive Forming Charts" of the successfully formed parts, presenting the test conducted and the techniques used.

1. <u>304 Stainless Steel</u>. The 304 stainless steel was found to be very receptive to the metal gathering technique of forming. Four bulkheads were formed of this material; one is depicted in Figure 3. Mechanical properties were taken of one bulkhead before and after forming, indicating yield strength

FIGURE 2. DIE DRAW RING CONFIGURATION

increases of approximately 46,000 psi. Tables II and III present tensile test data of 304 stainless steel before and after forming.

Sample		Thick-		Ultima	Ultimate .		Yield		
Number	ber Width ness		Area	Load	Load psi		Load psi		Hardness
Li	0.5012	0.3983	0.1996	17,135	85,847	6,640	33,267	68.5	Rb 77-79
L2	0.5010	0.3984	0.1996	17, 175	86,047	6,696	33,547	69.2	
L3	0.4939	0.3984	0.1968	16,945	86,103	6,552	33,292	66.7	
			Av	erage	86,000		33,400	68.1	
Ti	0.4998	0.3984	0.1991	17, 185	86,313	6,480	32,546	67.0	
T2	0.4987	0.3987	0.1988	16,675	83,878	6,600	33,199	66.0	
T3	0.4976	0.3987	0.1984	17,025	85,812	6,440	32,460	66.1	
				Average	85, 300		32,700	66 4	

TABLE II.TENSILE TEST DATA OF PARENT304 STAINLESS STEEL

TABLE III.	TENSILE	TEST	DATA	OF	EXPLOSIVELY
FORMED 304 STAINLESS STEEL					

Sample		Thick-		Ultimate		Yie	ld	Percent	
Number	Width	ness	Area	Load	psi	Load	psi	Elong.	Location of Tensile
1	0.5025	0.3370	0.1693	20,000	118,133			34.8	Yield unattainable -Apex
2	0.5025	0.3430	0.1724	20,025	116,154	11,700	67,865	35.3	Apex
3	0.5025	0.3590	0.1804	19,425	107,677	12,180	67,515	40.8	Midway on Dome
4	0.5025	0.3580	0.1800	19,150	106,389	11,920	66,222	38.9	Midway on Dome
5	0.5005	0,4180	0.2092	19,320	92,352	12,640	60,421	52.0	Flange
6	0.5010	0.4030	0.2019	21,950	108,717	14,440	71,521	43.6	Flange
7	0.5025	0.4250	0.2136	26,750	125,234	17,300	80,993	24.8	Flange
8	0.5035	0.4390	0.2210	29,050	131,448	14,720	66,606	21.0	Flange (end)
			Av	erage	113,263		68,734	36.4	

The characteristic of 304 stainless steel to work harden while explosive forming indicated it would be a very good material for pressure tanks since thickness and thus weight could be reduced. A metallurgical examination of 304 stainless steel is contained in Appendix B.

FIGURE 3. 304 STAINLESS STEEL (BEFORE TRIMMING)

2. <u>X7106-Aluminum Alloy</u>. An X7106 aluminum blank 1-inch thick was necessary to fulfill the pressure test requirements. This presented a challenge because of the draw-diameter ratio (approximately 1:2) of the bulkhead. The metal gathering technique coupled with a ring configuration of sheet explosive and primacord were used to overcome this problem. This technique caused the material to flow toward the apex of the part by exerting the greatest force on the periphery and not on the center. Thus, splitting at the thin section (apex) of the bulkhead was reduced.

A number of bulkheads were formed using the 45-degree draw ring with a 3-inch draw radius as shown in Figure 4, and the draw exceeded the stretch

FIGURE 4. X7106 A LUMINUM (3-INCH RADIUS)

by a factor of approximately 3 to 2. Photomicrographs of an explosively formed dome of X7106 aluminum are contained in Appendix C. Vidigage measurements of the two bulkheads used in fabricating the pressure vessel are presented in Figure 5 and indicate a thinout at the apex of approximately 44 percent.

Product evaluation by Quality Assurance indicated the X7106 aluminum bulkheads were acceptable for pressure tank fabrication. The quality assurance results are presented in Figure 6, and Tables IV and V.

VIDIGAGE MEASUREMENTS

FIGURE 6. PRODUCT EVALUATION OF FORMED X7106 ALUMINUM (HARDNESS - THICKNESS)

TABLE IV. PRODUCT EVALUATION OF EXPLOSIVELY FORMED AND TRIMMED X7106 ALUMINUM

Measurement	Required	Actual			
		2AL	4AL		
Outside diameter	21 ± 1.0 Inch	19.94/20.01	19.96/19.94		
Length (Sum of two)	24 ± 2 Inches		22.64 Inches		
Thickness: Apex - Min. 0.500 inch	0.625 Inch	0. 570 Inch			
Cylinder Section – Min	0.770 Inch	0.770 Inch			
Threads: Each End	AN 1 1/16 - 12-2 B	ОК	ОК		
Quarter, half and three quarter points	AN 3/4-16-2B	ок	ОК		

TABLE V. PRODUCT EVALUATION (HARDNESS - THICKNESS) FORMED X7106 ALUMINUM

		Hardness			
Location	Thickness Inches	Rockwell – B O. D.	Rockwell – B I. D.		
1	1.232	62.8	67.2		
2	1.151	73.6	54.8		
3	1.116	75.6	74.3		
4	1.040	74.9	69.5		
5	0.942	72.0	71.0		
6	0.840	70.2	82.8		
7	0.835	70.0	62.8		
8	0.906	75.1	77.8		
9	0.895	73.4	70.1		
10	0.850	73.5	73.7		
11	0.815	76.6	75.9		
12	0.804	76.8	78.0		

		Hard	ness
Location	Thickness Inches	Rockwell – B O. D.	Rockwell - B I. D.
13	0.786	75.5	77.9
14	0.771	74.8	76.8
15	0.741	77.1	79.1
16	0.625	75.4	74.1
17	0.526	65.3	72.5
18	0.544	69.8	72.1
19	0.589	73.8	74.0
20	0.640	74.9	72.0
21	0.679	74.0	78.1
22	0.711	77.2	78.4
23	0.742	76.2	79.9
24	0.770	75.5	79.7
25	0.797	77.0	77.9
26	0.808	76.5	73.3
27	0.842	74.5	76.4
28	0.872	75.0	76.9
29	0.884	77.4	61.3
30	0.843	77.1	80.0
31	0.805	76.2	82.0
32	0.882	66.3	75.3
33	0.977	80.0	68.0
34	1.050	78.6	77.0
35	1.092	74.5	72.2
36	1.155	73.2	70.8
37	1.180	73.6	73.0

TABLE V. (Concluded)

ELECTRON BEAM WELDING

Welding X7106-T63 Aluminum Alloy

1. <u>Problems and Solutions</u>. The metallurgical composition of X7106-T63 aluminum presented problems in making electron beam weldments. The

relatively high percentage of volatile zinc in this alloy produces a very detrimental metal vapor which may cause a direct contact or short between the cathode and anode, thus resulting in an arc-out.

One of the most successful techniques for reducing this arcing condition has been the placing of a vapor shield between the electrode gun and the workpiece, thus trapping or collecting the metal vapors. This technique, employing a shield of the same electrical potential as the workpiece, was used successfully to weld 1-inch thick flat plates of X7106-T63 aluminum but was not deemed feasible for welding cylinders because of the contour of the part. Therefore, MSFC personnel developed an adaptor or supressor attached to the electron gun between the focus coil and the workpiece (Fig. 7) to weld aluminum cylinders successfully.

FIGURE 7. SECONDARY EMISSION SUPPRESSOR

2. Establishing Weld Param-

eters. Aluminum Alloy X7106-T63 plates of 3/4-inch thickness were electron beam welded to establish operational parameters prior to welding the pressure vessel of the same material and thickness. The depthto-width ratio was approximately 11 to 1.

Weld parameters for single pass, fully penetrated weld in the aluminum alloy plate were as follows:

High Voltage	29 kilovolts
Beam Current	250 Milliamperes
Focus Current	6.31 amperes
Filament Cur- rent	57 amperes
Travel Speed	40 inches per minute
Gun to Work	2 inches
Distance	

One weld was butt joined with an intentional mismatch. Other aluminum welds were of the bead-on-plate type. The above weld parameters were used in both cases.

Sample specimens for metallographic examination were obtained from the welds made with the derived parameters; micrographs of the weld crosssections with associated microhardness values are shown in Figure 8. The Knoop hardness values are converted to Rockwell B values in Table VI.

FIGURE 8. ELECTRON BEAM WELD IN 3/4-INCH THICK X7106-T63 ALUMINUM PLATE

				Ultin	nate	Yiel	ld		
Sample Number	Width	Thick- ness	Area	Load	psi	Load	psi	Percent Elong.	Remarks
90-1-1	0.997	1.009	1,0059	60,800	60,443	47,100	46,824	- 11.5	Pulled to 60,000 psi then set 24 hours and pulled to destruction.
-2	0.980	1.008	0.9878	60,100	60,842	46,400	46,973	10.8	
-3	0.990	1.005	1.003	60,790	60,608	46,960	46,820	10.0	
					60,600		46,872	10.8	
90-2-1	0.997	1,009	1,0059	61,000	60,642	47,520	47,241	9.8	
-2	0.980	1.010	0.9898	58,800	59,406	46,400	46,878	6.9	
-3	0.998	1.010	1.0079	61,200	60,720	47,360	46,989	11.8	
					60,300		47,000	9.5	
90-3-1	0.983	1.007	0,9898	57,120	57,709	46,400	46,878	6,3	
-2	0.980	1.009	0,9888	59,220	59,891	45,200	45,712	9.8	
-3	0.999	1,009	1.0079	60,000	59,530	46,400	46,036	8.4	
				Average	59,043		46,000	8.2	

TABLE VI. WELD PROPERTIES OF X7106-T63 ALUMINUM

				Ultima	ite		Yield		
Sample Number	Width	Thick- ness	Area	Load	psi	Load	psi	Percent Elong.	Remarks
90-4-1	0.996	1.009	1.0049	50,920	50,672	47,040	46,811	5.3	Lack of fusion at root of weld.
-2	0.980	1.010	0,9898	59,650	60,263	45,760	46,232	10.1	
-3	0.997	1.008	1.0049	61,125	60,827	47,720	46,492	11.9	
					57,300		46,500	9.1	
90-5-1	0.982	1.010	0,9918	60,650	61,151	46,240	46,622	11.0	
-2	0.980	1.011	0.9908	59,720	60,275	46,400	46,831	8.8	
-3	0.996	1.011	1,0069	61,050	60,632	46,480	46,161	11.8	
					60,700		46,500	10.5	
90-6-1	0.981	1.009	0.9898	60,080	60,699	46,480	46,959	11.4	
-2	0.980	1.010	0,9898	60,500	61,123	46,480	46,959	11.4	
-3	0,996	1.009	1.0049	60,980	60,683	46,560	46,333	10.3	
				Average	60 800		46.800	11.0	

3. <u>Welding a 20-Inch Diameter Pressure Vessel</u>. The same control parameters were used to obtain a radiographically acceptable welded cylinder, as were used to weld the flat aluminum plates. Figures 9, 10, and 11 show a bulkhead trimmed for welding, two bulkheads before welding, and the plenum

FIGURE 9. X7106-T63 ALUMINUM BULKHEAD TRIMMED FOR WELDING

tank welding fixture, respectively. Figures 12, 13, and 14 show the bulkheads in the fixture ready for E. B. spot welds, the welding of the cylinder, and the welded cylinder, respectively.

FIGURE 10. X7106-T63 ALUMINUM BULKHEAD BEFORE WELDING

FIGURE 11. PLENUM TANK WELDING FIXTURE

FIGURE 12. PLENUM TANK IN FIXTURE READY FOR E. B. SPOT WELDS

FIGURE 13. WELDING OF PLENUM TANK

FIGURE 14. X7106-T63 ALUMINUM WELDED PLENUM TANK

Welding 304 Stainless Steel

1. <u>Establishing Weld Parameters</u>. Weld parameters for single pass, fully penetrated, bead-on-plate weld in 3/8-inch thick 304 stainless steel were as follows:

High Voltage	30 amperes
Beam Current	230 milliamperes
Focus Current	6 amperes
Filament Current	57 amperes
Travel Speed	40 inches per minute
Gun to Work Distance	2 inches.

Gradual decrease in penetration at the terminal end of the weld (tailout) was accomplished by slowly decreasing the gun filament current from the required for full penetration to zero penetration. A cross-section of the tailout in the stainless steel plates is shown in Figure 15. A photomacrograph of the weld cross-section containing the tailout with associated microhardness values is shown in Figure 16. Sample specimens for metallographic examination were obtained from welds made with the derived parameters.

2. <u>Welding a 20-Inch Diameter Pressure Vessel</u>. The same control parameters were used to obtain a radiographically-acceptable welded cylinder as were used to weld the flat stainless steel plates. Figures 17 and 18 show the welded 304 stainless steel cylinder.

PLENUM TANK PRESSURE TEST DATA

The two plenum tanks, X7106-T63 aluminum and 304 stainless steel, were pressure tested by the test section of P&VE.

The tanks were filled with water and pressurized by a hand pump to a pressure of 2500 psi and held for 30 minutes (monitored by a pressure gage). It was determined that the original test pressure of 3000 psi was excessive; therefore, the cylinders were tested at 2500 psi. No leak developed and there was no visual damage to the tanks.

FIGURE 15. CROSS-SECTION OF TAILOUT AS WELDED IN 304 STAINLESS STEEL PLATE

NOTE: KNOOP HARDNESS VALUES ARE GIVEN FOR POSITIONS INDICATED FROM CENTER OF WELD INTO PARENT METAL

FIGURE 16. ELECTRON BEAM WELD IN 3/8-INCH THICK 304 STAINLESS STEEL PLATE

CONCLUSIONS AND RECOMMENDATIONS

Explosive Forming

1. Explosive forming is an acceptable technique for the production of acceptable quality plenum tank bulkheads from stainless steels, such as 304, and high strength aluminum alloys, such as X7106 in relatively thick sections.

FIGURE 17. WELDED 304 STAINLESS STEEL PLENUM TANK (END VIEW)

2. The use of explosives in forming 304 stainless steel increases the yield strength by approximately 30 percent, by work hardening the material.

3. The metal gathering technique of explosive forming is recommended for forming thick materials into configurations such as:

$$\frac{x^2}{2} + \frac{y^2}{1} = 1 \; .$$

FIGURE 18. WELDED 304 STAINLESS STEEL PLENUM TANK (SIDE VIEW)

Electron Beam Welding

1. The use of a vapor shield or suppressor is necessary for successful welding of X7106-T63 aluminum using the electron beam.

2. By the electron beam technique, 304 stainless steel is readily welded.

APPENDIX A. EXPLOSIVE FORMING CHARTS

EXPLOSIVE FORMING CHARTS

SHEET 1 of SHEETS 12

TD-47 E. P. - 5080

MATER	RIAL 304	STAIN	LESS S	TEEL (29 I	N. DIA. x 1/4 INCH TI	ПСК)	DII	C - 20 IN. DI	IA. CONFIG	URATION X	$\frac{y^2}{1} + \frac{y^2}{1} = 1$			
DART	SHOT	-		EXPLOS	VE	STAND	INITIAL	FINAL	INITIAL	FINAL	% DRAW	% STRETCH	PART	MISC.
NO.	NO.	TYPE	E	WT.	CONFIGURATION	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	$\frac{D-dF}{D} \ge 100$	$\frac{\text{LF-II}}{\text{li}} \ge 100$	(Inches)	MATION
1-SS	1	Prim	acord	523 Grains	20 In. Dia. Circle	4	29	27-3/4	29	* 30-3/8	4.3		3-11/16	
-	2	-					27-3/4	27-1/8	30-3/8	* 29-5/8	2, 3		4-3/4	
	3		<u> </u>	- 1	-	3	27-1/8	27	29-5/8	30	0.4	0.4	5-1/4	
	4			471 Grains	18 In. Dia. Circle	 2-1/2	27	26-5/8	30	30-1/8	0.5	0.4	5-3/4	14
	5	Prima	acord	942 Grains		3	26-7/8	26-1/2	30-1/8	30-1/2	1.0	1.0	6-9/16	
	6		3				26-1/2	26-3/16	30-1/2	31	1,2	0.8	7	
	7			1256 Grains	18 In. and 6 In. Dia. Circle	3-Flange 3-Apex	26-3/16	26	31	31-1/4	0.7	0.8	7-1/2	
1	8					100 A.	26	25-1/2	31-1/4	21-1/2	1.9	0.8	8-1/16	
	9				16 In. and 8 In. Dia. Circle	4-Flange 3-Apex	25-1/2	25-1/8	31 1/2	32	1,5	1.6	8-5/16	
	10	Prima Comp	acord . C4	2064 Grains	16 In. Dia. Circle Ball	4–Flange 4–Apex	25-1/8	23-5/8	32	Bottom of Die	6,0		9-5/8	
	11	Prima	acord	1464 Grains	(2) 14 In. Dia Circle	i-Draw R 4-Draw R	Part to ter	nplate config	guration exc	ept 1/16 in. :	at 20 inch dian	neter.		

* Blank edges pulled away from 45° draw ring. Arc measurements are incorrect - Shot No.'s 1 and 2.

% DRAW - 18.5%

% STRETCH - 5.3%

REMARKS: 1. The draw ring of 45 degrees with a 1-inch draw radius was used on this test.

2. Bulkhead was sectioned for metallurgical properties and these properties + , are included in an appendix of this report.

SHEET 2 of SHEETS 12

TD-47 E. P. - 5080

					STAND	INTETAT	FINAL	INFTIA I	FINAT	% DRAW	% STRETCH	PART	MISC.
DADT	SUOT	E	XPLOSIVE		OFF	DIA. (D)	DIA. (dF)	ARC (li)	ARC (LF)	D-dF	LF-li	DEPTH	INFOR-
NO.	NO.	TYPE	WT.	CONFIGURATION	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	x 100	x 100	(Inches)	MATION
2-88	1	Primacord	1042 Grains	20 In. Dia. Circle	4	29	26-7/8	29	29-3/4	7.3	2.6	3-1/2	
	2					26-7/8	Dimension	ns were not	recorded.				
	3					26-7/8	26-7/8	No draw	- all stretch i	ndicated			
	4					26-7/8	26-5/8	29-3/4	29-3/4	0.9	8	5-3/4	
	5		942 Grains	18 In. Dia. Circle	3-From Apex	26-5/8	26-1/4	29-3/4	30-1/2	1.4	2.5	6-1/2	
	6	Primacord Comp. + C4	2064 Grains	16 In. Dia. Circle Ball	4-Flange 4-Apex	26-1/4	24-5/8	30-1/2	31-5/8	6.2	3.7	8-7/16	
	7		1621 Grains			24-5/8	24	31-5/8	32-1/4	2.5	2,0	8-7/8	
	8					24	23-1/8	32-1/4	33	3.6	2,3	9-8/16	
	9	Primacord	1152 Grains	12 In. Dia. Circle 16 In. Dia. Circle	5-Flange 1-Flange	Part to te	mplate cont	our except f	1/16 inch at 2	0-inch diamete	er.		

% DRAW - 20.3%

% STRETCH - 10.2%

REMARKS: 1. A 45 degree draw ring with a 1 inch draw radius was used on this test.

2. Bulkhead held for tests, as required.

EXPLOSIVE FORMING CHARTS (Cont'd)

SHEET 3 of SHEETS 12

TD-47		Е. Р	- 5080										-	
MATE	RIAL 30	4 STAI	NLESS S	TEEL (31	IN. DIA. x 3/8 INCH T	ніск)	I	DIE - 20 IN.	DIA, CONF	IGURATION	$\frac{x^2}{2} + \frac{y^2}{1} =$	1.		
PART	SHOT			EXPLOS	IVE	STAND	INITIAL DIA. (D)	FINAL DIA.(dF)	INITIAL ARC (li)	FINAL ARC (LF)	% DRAW D-dF	% STRETCH	PART	MISC.
NO.	NO.	TY	PE	WT.	CONFIGURATION	(Inches)	(Inches)	(Inches)	(lnches)	(Inches)	$\frac{D}{D} \times 100$	li x 100	(Inches)	MATION
3-SS	i	Prim	acord	515 Grains	20 In. Dia. Circle	4	31	30-5/8	31	31-1/4	1.2	0.8	2-5/8	
	2			1030 Grains			30-5/8	29-1/4	31-1/4	31-5/8	4.5	1,2	4-1/4	
	3			1875 Grains	18 In. Dia. Circle		29-1/4	28-3/8	31-5/8	32	3.0	1,1	5-5/8	
	4	•		1875 Grains			28-3/8	28-1/8	32	32-1/2	0.9	1.6	6-3/8	
	5	116 116		1875 Grains			28-1/8	27-7/8	32-1/2	32-3/4	0.9	0.4	7	
	6	'Deta	♥ isheet"	3102 Grains	(2) 8 In. Dia. Disks		27-7/8	27	32-3/4	33-1/2	3. 1	2,3	8-1/4	
	7	Prim	acord	2000 Grains	5 Ft. Spiral Pattern	2-1/2	27	26-5/8	33-1/2	33-3/4	1.4	0.7	8-5/8	
	8	''Deta	sheet"	3102 Grains	(2) 8 In. Dia. Disks	4	26-5/8	26	33-3/4	34-3/8	2,3	1,9	9-3/8	
a	9			4653 Grains	(3) 8 In. Dia. Disks		26	24-1/2	34-3/4	35-1/4	5.8	1.4	10-1/2	
	10			4653 Grains			No measu	rements tak	en – part no	t removed fre	om die.		31.6	
	11	Prim	acord	400 Grains	14 In. Dia. Circle	3	-	Sizing Sho	t					
	12	Prim "Deta	acord sheet"	3425 Grains	12" Dia. Circle 12" O. D. x 8" I. D.	4	24-1/2	21-3/4	35-1.4	37-5/16	11.2	6.0	12	

% DRAW - 29.8

% STRETCH - 20.3

REMARKS: 1. 45 -degree draw ring with a 3-inch draw radius was used on this test.

2. Part machined and held for future tests, as required.

SHEET 4 of SHEETS 12

______TD-47 E. P. - 5080

					1				1	1			1
DAPT	SHOT		EXPLO	SIVE	STAND	INITIAL	FINAL	INITIAL	FINAL	% DRAW	% STRETCH	PART	MISC.
NO.	NO.	TYPE	WT.	CONFIGURATION	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	$\frac{D-dF}{D} \times 100$	$\frac{\text{LF-li}}{\text{li}} \times 100$	(Inches)	INFOR- MATION
4-SS	1	Primacord	1030 Grains	20 In. Dia. Circle	4	31	29-5/8	31	31-1/4	4.4	2.4	3-3/4	
	2		1030 Grains	↓ ↓		29-5/8	29	31-3/4	31-7/8	2, 1	0,4	4-3/4	
	3		1875 Grains	18 In. Dia. Circle		29	28-1/2	31-7/8	32-1/4	1.7	1.2	6	
	4 "	"Detasheet"	3102 Grains	(2) 8 In. Dia. Disks		29-1/2	27-1/2	32-1/4	32-15/16	3.5	2.1	7-1/2	
	5		4653 Grains	(3) 8 In. Dia. Disks		27-1/2	26 -1/8	32-15/16	34	5.0	3.0	8-7/8	
	6		6204 Grains	(4) 8 In. Dia. Disks		26-1/8	24-3/8	34	35-3/8	4.8	4.0	10-1/2	
	7		4653 Grains)	(3) 8 In. Dia. Disks		No Measu	rements Tak	en					
	8	¥	3877 Grains	4" Wide Strip 10" Dia. Disks	4-Side 2-Apex	24-3/8	21-1/2	35-3/8	37	12.0	5.0	11-7/8	

% DRAW - 30.6

% STRETCH - 19.7

REMARKS: 1. 45° draw ring with 3-inch draw radius used in this test.

2. Part machined and held for tests, as required.

EXPLOSIVE FORMING CHARTS (Cont'd)

SHEET 5 of SHEETS 12

TD-47 E. P. - 5080

MATE	RIAL 304	STAINLESS ST	EEL (31 D	N. Dia. x 3/8 INCH TH	IICK)	DIE	- 20 IN. DIA	. CONFIGU	RATION $\frac{x^2}{2}$	$+ \frac{y^2}{1} = 1$			
DADT	SHOT		EXPLOSIV	Έ	STAND	INITIAL DIA. (D)	FINAL DIA. (dF)	INITIAL ARC (li)	FINAL ARC (LF)	% DRAW	% STRETCH	PART DEPTH	MISC. INFOR-
NO.	NO.	TYPE	WT.	CONFIGURATION	(Inches)	(Inches)	(Inches)	(Inches)	(Inches	X 100	li x 100	(Inches)	MATION
55.5	1	Primacord	1030 Grains	20 In. Dia. Circle	4	31	29-9/16	31	31-1/2	4.6	1.6	3-3/4	
	2		2060 Grains			29-9/16	28-3/4	31-1/2	32	2.7	1.9	5-1/2	
	3		1875 Grains	18 In. Dia. Circle		28-3/4	28-1/4	32	32-1/2	1.7	1.6	6-1/4	
	4	"Detasheet"	9690 Grains	10 In. Dia. Disk		28-1/4	25-1/4	32-1/2	34-3/4	10.6	7.0	9-5/8	
	5		3625 Grains			25-1/4	24-1/2	34-3/4	35-1/2	3.0	2.2	10-3/8	
	6		3940 Grains	(2) 9 In. Dia. Disks		24-1/2	23-1/4	35-1/2	36-1/4	5.0	2,0	11-1/4	
	7		1308 Grains	6 In. Dia. Disks	3	21	Sizing Sho	ot to Seat Pa	rt Into Die				
	8	V	7270 Grains	(2) 10 In. Dia. Disks	4	22-3/4	21-1/2	-		5.5	-	-	

% DRAW - 30.6

% STRETCH - 17.0

REMARKS: 1. 45° draw ring with a 3-inch draw radius used.

2. Part machined and held for study, as required.

SHEET 6 of SHEETS 12

TD-47 E. P. - 5080

DADT	SHOT		EXPLOSI	VE	STAND	INITIAL DIA (D)	FINAL DIA (dF)	INITIAL ARC (1i)	FINAL ARC (LF)	% DRAW	% STRETCH	PART DEPTH	MISC. INFOR-
NO.	NO.	TYPE	WT.	CONFIGURATION	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	x 100	x 100	(Inches)	MATION
6 -SS	1	Primacord	1030 Grains	20 In. Dia. Circle	4	31	29-1/2	31	31-1/2	4.8	1.6	3-3/8	
	2		2060 Grains		•	29-1/2	28-5/8	31-1/2	32	3.0	1.6	5-1/2	
	3		1875 Grains	18 In. Dia. Circle	3	28-1/2	28-1/2	32	32-3/8	1,8	1.2	6-1/2	
	4	"Detasheet"	6208 Grains	10 In. O.D. x 6 In. I. D. Ring	4	28-3/8	26-3/8	32-3/8	34-1/8	6.2	6.0	8-7/8	
	5		7270 Grains	(2) 10 In. Dia. Disks		26-3/8	24	Not Meas	ured	9.0	+	10-9/16	
	6		7270 Grains			No Measu	rements Tal	ken.					
	7		400 Grains	10 In. O.D. x 6 In. I. D. Ring	5	24	21-3/8	34-1/8	37 -5/8	10.9	10.2	12-1/16	

% DRAW - 27.8

% STRETCH - 21,4

REMARKS: 1. 45° draw ring with a 3-inch draw radius used.

2. Part machined and held for test, as required.

EXPLOSIVE FORMING CHARTS (Cont'd)

SHEET 7 of SHEETS 12

TD-47 E. P. - 5080

MATER	IAL X7	06-0 ALUMINU	JM (32 IN.	DIA. x 1 INCH THICH	K)	DIE	- 20 IN. DIA	. CONFIGU	TRATION $\frac{x^2}{2}$	$+\frac{y^{-}}{1}=1$			
PART	SHOT		EXPLOSIV	E	STAND	INITIAL	FINAL	INITIAL	FINAL	% DRAW	% STRETCH	PART	MISC.
NO.	NO.	TYPE	WT.	CONFIGURATION	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	$\frac{D-dF}{D} \ge 100$	$\frac{LF-11}{1i} \ge 100$	(Inches)	MATION
4 AL	1	Primacord	2297 Grains	22 In. Dia. Circle	4	32	30	32	31-3/4	6.6	7.0	4-5/16	
	2	"Detasheet"	10,082 Grains	(2) 10 In. Disk (4) 10 In. O.D.		32	29-5/16	31-3/4	34-7/8	14.8	9.8	10	
				x 8 In. I.D. Strips	•								
	-			In process anne	aled. —								
	3	"Detasheet"	8776 Grains	(2) 10 In. Disk (3) 10 In. O.D.	10-Above Apex	Sides not t	o die configu	iration				13/16 From Die	
				x 8 In. I.D. Strips								Bottom	
	4				6-Above Apex							Bottomed Out	
	5	Primacord	1046 Grains	10 In, Dia Circle	1-Below Draw R.	29-9/16	20-1/4	34-7/8	38-3/4	21	10	13-7/8	

% DRAW - 36.7

% STRETCH - 22.05

REMARKS: 1. A 45° ring with a 3-inch draw radius was used on this and all subsequent tests.

2. Part to template contour, heat treated and aged to T-63 condition.

3. Metallurgical properties are reported in Appendix C.

SHEET 8 of SHEETS 12

MIT 1 131		ioo o miomino	11 (04 111,	but, a r mon rmon												
DART	SHOT	E	XPLOSIVE		STAND	INITIAL DIA (D)	FINAL DIA (dF)	INITIAL ARC (11)	FINAL ARC (LF)	$\frac{\text{\% DRAW}}{D-\text{dF}} \ge 100$	$\frac{\text{M STRETCH}}{\frac{\text{LF-li}}{\text{li}} \times 100}$	PART DEPTH	MISC. INFOR-			
NO.	NO.	TYPE	WT.	CONFIGURATION	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)			(Inches)	MATION			
5 AL	1	Primacord	2297 Grains	22 In. Dia. Circle	4	32	29-1/4	32	31-3/4	8.6	0.8	4-3/4				
	2	"Detasheet"	13,814 Grains	(3) 10 In. Disk (5) 10 In. O.D.		29-1/4	25-1/4	31-3/4	33-3/4	13,7	6.0	9-1/4				
				x 8 In. I.D. Strips												
				In process a	nnealed											
	3	"Detasheet"	11,788 Grains	(2) 10 In, Disks (3) 8 In, Disks	9-Above Apex	25-1/4	22	33-3/4	36-1/2	12.9	8,1	11-3/4				
	4	Primacord	1046 Grains	10 In. Dia. Circle	2-Below Draw R.	Part to bo	ttom of die -	- sides not f	ïlled out.			12-1/8				
	5	"Detasheet"	8383 Grains	(3) 10 In. Disks	6-Above Apex	22	20-1/8	36-1/2	39	8.5	6.8	13-3/8				

% DRAW - 37.1

% STRETCH - 18.8

REMARKS: 1. Part is to template contour.

2. Machined and treated to T-63 condition for weld study.

EXPLOSIVE FORMING CHARTS (Cont'd)

SHEET 9 of SHEETS 12

TD-47 E. P. - 5080

MATER	RIAL X7	06-0 ALUMINU	JM (32 IN.	DIA. x 1 INCH THICK))		DIE - 20 INCH DIA. CONFIGURATION $\frac{x^2}{2} + \frac{y^2}{1} = 1$						
DADT	SHOT	EXPLOSIVE			STAND	INITIAL DIA. (S)	FINAL DIA (dF)	INITIAL ABC (11)	FINAL ARC (LF)	% DRAW	% STRETCH	PART DEPTH	MISC.
NO.	NO.	TYPE	WT.	CONFIGURATION	(Inches)	(Inches)	(Inches)	(Inches)	(Inches)	x 100		(Inches)	MATION
10 AL	1	Primacord	2297 Grains	22 In. Dia. Circle	4	32	29-1/4	32	31-3/4	8.9	0.8	4-15/16	
10.00					In Pr	ocess Annea	led —			_			
	2	"Detasheet"	11,788 Grains	(2) 10 In. Disk (3) 8 In. Disk		29-3/4	25	31-3/4	34-3/8	13, 3	7.6	10-1/8	
	3	"Detasheet"	9596 Grains	(2) 10 In. Disk (2) 8 In. Disk	4-1/2 Above Ape	ex 25	20-1/2	-1/2 34-3/8	34-3/8 38-1/8	22	10.1	12-7/8	
	4	Primacord	1232 Grains	12 In. Dia. Circle	2-Below Draw R.	No measu	rements - pa	art of bottor	n of die.				
	5	V	800 Grains	8 In. Dia. Circle	Even to Draw R.	Part now	to template o	contour.				13-1/4	

% DRAW - 36.0

% STRETCH - 20.5

REMARKS: 1. Part machined and treated to T-63 condition for weld study.

SHEET 10 of SHEETS 12

TD-47 E. P. -5080

MATER	RIAL X	7106-0 ALUMIN	UUM (32 IN	, DIA, x 1 INCH THICI	K)		DIE - 20 1	DIE - 20 IN. DIA. CONFIGURATION $\frac{x^2}{2} + \frac{y^2}{1} = 1$							
DART	SHOT		EXPLOS	VE	STAND	STAND INITIAL		INITIAL	FINAL	% DRAW	% STRETCH	PART MISC			
NO.	NO.	TYPE	WT.	CONFIGURATION	(Inches)	(Inches)	(lnches)	(Inches)	(Inches)	$\frac{D-dF}{D} \ge 100$	$\frac{\text{LF-II}}{\text{li}} \ge 100$	(Inches) MAT			
11 AL	1	Primacord	2297 Grains	22 In. Dia. Circle	4	ء 32	29-1/2	32	31-5/8	8.0	1.2	4-1/2			
	2	"Detasheet"	11,788 Grains	(2) 10 In. Disk (3) 8 In. Disk		29-1/2	24-3/4	31-5/8	34-1/2	16,1	9.1	10-1/8			
	-					- In Proces	s Annealed								
	3	"Detasheet"	8481 Grains	(3) 10 In, Disk	4	24-3/4	21	34-1/2	38	15.2	10,1	12-1/4			
	4	Primacord	836 Grains	8 In. Dia. Circle	9-Above Apex	No detecte	d dimensior	al changes.							
	5		1218 Grains	12 In. Dia. Circle											
	6	•	1218 Grains		2-Below Draw R.	21	▼ 20	38	40-1/8	4.8	5,6	13-1/8			

% DRAW - 37.5

% STRETCH - 26.9

REMARKS: 1. Shots 4 and 5 were sizing shots, to expand part to the die maximum diameter.

2. Part trimmed and treated to T-63 condition.

3. Part held for study, as required.

EXPLOSIVE FORMING CHARTS (Cont'd)

SHEET 11 of SHEETS 12

TD-47 E. P. - 5080

IAL X	7106-0 ALUMIN	IUM (32 IN.	DIA, x 1 INCH THICK	(5		DIE - 20 I	N. DIA. CO	ONFIGURATIC	$\frac{x^2}{2} + \frac{x^2}{1}$			
	jad i	XPLOSIVE		STAND	INITIAL NA (D)	FINAL	INITIAL	FINAL	% DRAW	% STRETCH	PART 1	AISC.
4	TYPE	WT.	CONFIGURATION	UFF (Inches)	(Inches)	(Inches)	(Inches)	(Inches)	$\frac{D-dr}{D} \ge 100$	<u>11</u> x 100	(Inches)	MATION
	Primacrod	6903 Grains	(3) 22 In. Dia. Circle	4	32	28	32	32-1/3	12, 5	0.8	7-3/8	
	"Detasheet"	8482 Grains	(5) 10 In. Dia. Disks		28	25	32-1/4	35	10.7	8.5	10-1/4	
				-In Process	s Annealed						•	
	"Detasheet"	6056 Grains	(4) 10 In. Dia. Disks	4	25	23-3/4	35	35-1/2	5.0	1, 4	11-15/16	
1				- In Process	s Annealed						•	
	"Detasheet"	4846 Grains	(2) 10 In. Dia. Disks	4	23-3/4	21	35-1/2	38-1/2	5.3	8.4	13	
	Primacord "Detasheet"	2916 Grains)	10" Dia. Circle 2" Wide Strip	5-From Apex	21	20	38-1/2	38-3/4	4,8	0.6	13-1/2	

% DRAW - 37.5

% STRETCH - 20.2

REMARKS: 1. Part machined and treated to T-63 condition. (Maximum machined thickness 3/4-inch.)

* Micrometer reading = 0.784 $\frac{8 \text{ In}}{0.820} \approx \frac{16 \text{ In}}{0.785}$ <u>4 In.</u> 0.725 <u>1 In.</u> 0,585 2. Vidigage thickness measurements. $\frac{Apex}{0.560}$

SHEET 12 of SHEETS 12

FD-47	E. P.	- 5080	

MATEF	RIAL X7	106-0 ALUMIN	UM (32-1,	4 IN. DIA. x 1 INCH	THICK)		DIE ~ 20 I	DIE - 20 IN, DIA, CONFIGURATION $\frac{x^2}{2} + \frac{y^2}{1} = 1$							
PART NO.	SHOT NO.	E	XPLOSIVI WT.	CONFIGURATION	STAND OFF (Inches)	STAND INITIAL OFF DIA. (D) (Inches) (Inches)		INITIAL ARC (li) (Inches)	FINAL ARC (LF) (Inches	% DRAW <u>D-dF</u> x 100	$\frac{\% \text{ STRETCH}}{\frac{\text{LF-li}}{\text{li}} \times 100}$	PART DEPTH (Inches)	MISC. INFOR- MATION		
16 AL	1	Primacord	2300 Grains	22 In. Dia Circle	4	32-1/4	29-5/8	32-1/4	33-1/8	16.0	2.7	4-5/8			
	2	"Detasheet"	4630 Grains	(3) 8 In. Dia. Disk		29-5/8	27-5/16	33-1/8	8 34-3/4	6.8	5.0	8-1/8			
	-					In Proc	ess Annealed								
	3	"Detasheet"	9695 Grains	(4) 10 In. Dia. Disks	4-3/4	27-15/16	24-3/4	34-3/8	37	9,3	7.6	10-7/8			
	-		- In Proce	ess Annealed - 1 1/2 Ir	hch - Cut off C	D.D. of 45°	Flange. ——								
	4	4 "Detasheet" 2916 10 In. O.D. x 6 8-From Grains In. I.D. Circle Apex N		No measu	to measurements taken because of reduced O.D.										
	5		4653 Grain	(3) 8 In. Dia. Disk	6										
	6 -	Primacord	800 Grain	8 In. Dia. Circle	Draw Radius	Part to te	mplate config	guration.							

% DRAW -

% STRETCH -

REMARKS: 1. Part treated to T-63 condition, machined and held for future use.

2. Vidigage thickness measurements: $\frac{Apex}{0.585} = \frac{4 \text{ In.}}{0.735} = \frac{8 \text{ In.}}{0.830} = \frac{12 \text{ In.}}{0.880} = \frac{*16 \text{ In}}{0.775} * \text{ Micrometer reading } 0.775$

APPENDIX B. METALLURGICAL EXAMINATION OF 304 STAINLESS STEEL

FIGURE B-1. HARDNESS MEASUREMENTS OF 304 STAINLESS STEEL EXPLOSIVELY FORMED BULKHEAD

LONDITUDINAL

FIGURE B-2. TYPICAL MICRO STRUCTURES OF 304 STAINLESS STEEL AS RECEIVED

100X ETCHED ELECTROLYTICALLY IN 5 PERCENT OXALICACID

TRANSVERSE

FIGURE B-3. TYPICAL MICRO STRUCTURE OF 304 STAINLESS STEEL AS RECEIVED

APPENDIX C. PHOTOMICROGRAPHS OF EXPLOSIVELY FORMED DOME OF X7106 ALUMINUM

FIGURE C-1. OUTSIDE VIEW OF THE DOME SHOWING THE LOCATION OF SPECIMENS 1, 5, 6, AND 7

FIGURE C-2. OUTSIDE VIEW OF THE DOME SHOWING THE LOCATION OF SPECIMENS 2, 3, AND 4

FIGURE C-3. INSIDE VIEW OF THE DOME TOP SHOWING THE LOCATION OF SPECIMENS 8 AND 9

FIGURE C-4. PHOTOMICROGRAPH OF THE OUTSIDE SURFACE OF THE EXPLOSIVELY FORMED DOME OF X7106-T63 ALUMINUM ALLOY. SPECIMEN NUMBER 5

50X

FIGURE C-5. PHOTOMICROGRAPH OF THE OUTSIDE SURFACE OF THE EXPLOSIVELY FORMED DOME OF X7106-T63 ALUMINUM ALLOY. SPECIMEN NUMBER 6

FIGURE C-6. PHOTOMICROGRAPH OF THE OUTSIDE SURFACE OF THE EXPLOSIVELY FORMED DOME OF X7106-T63 ALUMINUM ALLOY. SPECIMEN NUMBER 7

50X

FIGURE C-7. PHOTOMICROGRAPH OF THE OUTSIDE SURFACE OF THE EXPLOSIVELY FORMED DOME OF X7106-T63 ALUMINUM ALLOY. SPECIMEN NUMBER 9

KELLER'S ETCH

FIGURE C-8. PHOTOMICROGRAPH OF THE EXPLOSIVELY FORMED DOME OF X7106-T63 ALUMINUM ALLOY. THE CRACK MEASURES APPROXIMATELY 0.037 INCH DEEP FROM THE SURFACE. TOTAL LENGTH IS APPROXIMATELY 0.060 INCH LONG. TOTAL WIDTH OF SPECIMEN IS 0.500 INCH. SPECIMEN NUMBER 1

KELLER'S ETCH

FIGURE C-9. PHOTOMICROGRAPH OF THE EXPLOSIVELY FORMED DOME OF X7106-T63 ALUMINUM ALLOY. SPECIMEN NUMBER 2

100X

KELLER'S ETCH

FIGURE C-10. PHOTOMICROGRAPH OF THE EXPLOSIVELY FORMED DOME OF X7106-T63 ALUMINUM ALLOY. SPECIMEN NUMBER 3

DOME OF X7106-T63 ALUMINUM ALLOY. SPECIMEN NUMBER 4 FIGURE C-11. PHOTOMICROGRAPH OF THE EXPLOSIVELY FORMED

KELLER'S ETCH

100X

KELLER'S ETCH

XOOI

DOME OF X7106-T63 ALUMINUM ALLOY. SPECIMEN NUMBER 5 FIGURE C-12. PHOTOMICROGRAPH OF THE EXPLOSIVELY FORMED

KELLER'S ETCH

FIGURE C-13. PHOTOMICROGRAPH OF THE EXPLOSIVELY FORMED DOME OF X7106-T63 ALUMINUM ALLOY. SPECIMEN NUMBER 6

100X

KELLER'S ETCH

FIGURE C-14. PHOTOMICROGRAPH OF THE EXPLOSIVELY FORMED DOME OF X7106-T63 ALUMINUM ALLOY. SPECIMEN NUMBER 7

KELLER'S ETCH

FIGURE C-15. PHOTOMICROGRAPH OF THE EXPLOSIVELY FORMED DOME OF X7106-T63 ALUMINUM ALLOY. SPECIMEN NUMBER 8

100X

KELLER'S ETCH

FIGURE C-16. PHOTOMICROGRAPH OF THE EXPLOSIVELY FORMED DOME OF X7106-T63 ALUMINUM ALLOY. SPECIMEN NUMBER 9

REFERENCE

1. "Steels for Low Temperature Applications," U.S. Steel, 585 William Penn Place, Pittsburgh 30, Pennsylvania.

R-ME-DIR	R-QUAL-DIR
Mr. Kuers	R-OUAL-A
Mr. Wuenscher	N-QUAL-A
	R-RP-R
R-ME-A	
Mr. Nowak	AMSMI-IEP
Mr. Schwinghamer	Mr. Weatherhill
R-ME-D	DIR
Mr. Eisenhardt	
	DEP-T
R-ME-MM	
Mr. Wilson	CC-P
Mr. Brown	
	1-RM-M
R-ME-MMP	
Mr. Schuerer	MS-H
Mr. Irvine	MS ID
D ME MW	MS-IF
Mr Darke	MS-IL (8)
MII. FAIKS	Scientific and Technical Information
R_MF_RF	Facility (25)
Mr Moore (6)	P = O. Box 33
MI. MOOLE (0)	College Park, Maryland
B-ME-T	Attn: NASA Representative
Mr. Franklin	(S-AK/RKT)
R-ME-X	
Mr. Maurer	
R-P&VE-M	
D DOME MAK	
K-P&VE-MM	
R-P&VE-SS	

R-P&VE-SSM Mr. Katz

MS-T (6)