UNCLASSIFIED
SEARCH CONTROL NO. 021492

 000132
 TO: ARMY MS COMD
REDSTONE ARSENAL: AL 35809

REQUESTED BY: DAVY CHRISTIANSON 19 AUG $69 \mathrm{H}=9045$
PREPARED
BY

```
DEFENSE DOGUMENTATION CENTER
```

FOR
SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION, ALEXANDRIA, VIRGINIA

UNCLASSIFIED

NOTICE

WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR $A N Y$ PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U.S. GOVERNMENT THFREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER: AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDFR OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFAGTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO.
LIMITED REPORTS
REFERENCES TO ANY REPORTS LIMITED IN DISTRIBUTION ARE INCLUDED IN THIS BIBLIOGRAPHY FOR REFERENCE PURPOSES ONLY. TO OBTAIN COPIES OF THESE REPORTS, REQUESTS SHOULD BE FORWARDED TO THE CONTROLLING AGENCY VIA THE PROJECT OFFICER RESPONSIBLE FOR YOUR CONTRACT, SUCH REQUESTS SHOULD INCLUDE ALL DESCRIPTIVE CATALOGING INFORMATION NECESSARY FOR ACCURATE IDENT, FICATION.

NOFORN OR SIMILIAR MARKINGS
THE ENTRY SO MARKE IS SUBJECT TO SPECIAL EXPORT CONTROLS AND EACH TRANSMITTAL TO A FOREIGN GOVERNMENT OR FOREIGN NATIONAL MAY BE MADE ONLY WITH PRIOR APPROVAL OF THE ACTIVITY CITED IN THE BIBLIOGRAPHIC ENTRY.

NON-PERTINENT REFERENCES
ALL DDC BIBLIOGRAPHIES ARE PRODUCED BY A COMPUTER SEARCH OF OUR DATA BANK, THESE BIBLIOGRAPHIES MAY OR MAY NOT HAVE
BEEN REVIEWED BY A TECHNICAL SPECIALIST, IN THE EVENT A
REVIEW IS MADE AND NON PERTINENT REFERENCES ARE FOUND, THEY MAY OR MAY NOT HAVF BEEN REMOVED FROM THE BIBLIOGRAPHY, IF NON-PERTINENT REFERENCES ARE RETAINED IN A REVIEWED BIBLIOGRAPHY, THEY WILL BE STAMPED ' 'NON-PERTINENT'', BLANK PAGES ARE OCCASIONALLY INCLUDED IN BIBLIOGRAPHIES, THESE PAGES ARE NOT THE RESULT OF COMPUTER MALFUNCTIONS: THEY ARE THE RESULT OF ASSEMBLY PROCEDURES, WHICH ARE DESIGNED TO EXPEDITE OUR SERVICE TO YOU,

COMPLAINTS
IF YOU RECEIVE A BTBLIOGRAPHY THAT DOES NOT MEET YOUR REQUIREMENTS, PLEAGE REPORT IT TO THE CHIEF OF THE BIBLIOGRAPHY BRANCH BY CALLING 202-694-7058. PLEASE CITE THE SEARCH CONTROL NUMBER OF THE BIBLIOGRAPHY WHEN YOU CALL. EVERY EFFORT WILL BE MADE TO PROVIDE YOU THE INFORMATION THAT YOU NEED.

DDC REPORT BIBL, OGRAPHY SEARCH CONTROL NO, 021492

```
AD-854 361 17/7 16/4,2 9/2
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA ARMY INERTIAL
    GUIDANCE AND CONTROL LAB AND CENTER
    AN AUTOMATED COMPUTATION OF THE CIRCULAR
    ERROR PROBABILITY FOR AN INERTIAL GUIDANCE
    SYSTEM.
            FEB 69 114P ISOM,LARMON S. ;
REPT, NO. RG-TR-60-2
PROJ: DA=1-M-2623O1-A-204
                UNCLASSIFIED REPORT
DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF
COMMANDING GENERAL, ARMY MISSILE COMMAND,
ATTN: AMSMI-RG. REDSTONE ARSENAL, ALA.
35809.
DESCRIPTORS: (*GUTDED MISSILESISURFACE-TO-
    SURFA(E), INERTIAI GUIDANCE), (* CIRCULAR ERROR
    PROBABLE, PROGRAMMING, COMPUTERS)), MATHEMATICAL
    MODELS, MISS DISTANCE, GUIDED MISSILE TRAJECTORIES,
    ERRORS, IMPACT PRFDICTION, FLOW CHARTING,
    SUBROUTINES
IDENTIFIERS: PERSHING* XMGM-3IA MISSILES (U)
THIS REPORT DISCUSSES IN DETAIL A DIGITAL COMPUTER PROGRAM TO EVALUATE THE CIRCULAR ERROR PROBABILITY OF A WEAPON'S INERTIAL GUIDANCE SYSTEM. IT INCLUDES A DERIVATION OF EQUATIONS AND AN EXAMPLE OF A TYPICAL CIRCULAR ERROR PROBABILITY CASE STUDY. (AUTHOR) (U)
```

```
                                    UNCLASSIFIED
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
AD-851 173L 9/2 16/1 16/4.2
    PLANNING RESEARCH CORP LOS ANGELES CALIF
    STUDY OF PERSHING PLA COUNTDOWN PROGRAM
    11051812.
DESCRIPTIVE NOTE: FINAL REPT.,
        APR 69 33p FERGUSON,J. D. ;FOSTER,RR.
    W. :
REPT, NO, PRC-R-854
CONTRACT: DAAHO1-6}8-C-2O4
    UNCLASSIFIED REPORT
    DISTRIBUTION: CONTROLLED: ALL REQUESTS TO
    COMMANDING GENER\triangleL, ARMY MATERIEL COMMAND,
    ATTN: AMCPM-PE-X, REDSTONE ARSENAL, ALA.
    35809.
DESCRIPTORS: (*COMPUTER PROGRAMS, GUIDED MISSILE
    LAUNCHERS), (*HECKOUT PROCEDURES, COMPUTER
    PROGRAMSI, SUBROUTINES, LAUNCHING, GUIDED
    MISSILES(SURFACE-TO-SURFACE), CHECKOUT EQUIPMENT,
    GROUND SUPPORT EQUIPMENT, LAUNCHING SITES,
    PROGRAMMING(COMPUTERS), ELECTROMAGNETIC
    COMPATIBILITY, RADIOFREQUENCY INTERFERENCE

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492
AD-848 096 \(0 / 2\) 17/7
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA ARMY INERTIAL GUIDANCE AND CONTROL LAB AND CENTER LARGE-SCALE INTEGRATED CIRCUIT COMPUTER FOR COORDINATED TRANGMISSION,
AUG 68 PENA,RAUL, JR:

REPT. NO, RG-TR-6 \(8-12\)
PROJ: DA \(=1 \times 2791910678\)
UNCLASSIFIFD REPORT
DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF COMMANDING GENERAL, ARMY MISSILE COMMAND, ATTN: AMSMI-RG. REDSTONE ARSENAL, ALA. 35809 .

DESCRIPTORS: ( \(N A V I G A T I O N\) COMPUTERS, *DIGITAL DIFFERENTIAL ANALYZERS), (INERTIAL GUIDANCE, NAVIGATION COMPUTERS). GUIDED MISSILES (SURFACE-TO-SURFACE), ALGORITHMS, MATRIX ALGEBRA, TRANSFORMATIONS (MATHEMATICS), INTEGRATED CIRCUITS, FEASIBILITY STUDIES, LOGIC CIRCUITS, COMPUTER LOGIC
IDENTIFIERS: STRAPPED DOWN GUIDANCE SYSTEMS, PERSHING, PERSHING 2 MISSILES, XMGM-31A MISSILES, LARGE SCALE INTEGRATED CIRCUITS
```

METHODS AND ALGORITHMS FOR NAVIGATION SYSTEMS WITH
BODY-MOUNTED INERTIAL INSTRUMENTS HAVE BEEN STUDIED
BY VARIOUS RESEARCH GROUPS THROUGHOUT THE COUNTRY.
THE HIGH ITERATION RATES FOR COORDINATE
TRANSFORMATION IN A PERSHING II MISSILE AND THE
COMPLEXITY OF THE NAVIGATION SOLUTIONS MAKE A GENERAL
PURPOSE COMPUTER OR SPECIAL PURPOSE COMPUTER
UNFEASIBLE FOR THIS APPLICATION, A SCHEME TO USE A
SMALL DIGITAL DIFFERENTIAL ANALYZER AS THE FRONT END
OF A GENERAL PURPOSE NAVIGATION COMPUTER TO PERFORM
THE COORDINATE TRANSFORMATION IS FEASIBLE. THIS
REPORT DESCRIBES A UNIQUE MECHANIZATION OF A DIGITAL
DIFFERENTIAL ANA, YZER TO TRANSFORM THE OUTPUTS FROM
INERTIAL INSTRUMENTS FROM A BODY-FIXED COORDINATE
SYSTEM TO A STAB,LIZED COORDINATE SYSTEM. THE
DESIGN IS SPECIALLY ADAPTABLE TO VARIOUS LEVELS OF
LOGIC DENSITY USING LARGE-SCALE INTEGRATED CIRCUITS
BECAUSE IT HAS FEW DIFFERENT LOGIC CIRCUITS USED
REPEATEDLY AND PFRFORMS SERIAL COMPUTATION THAT
REQUIRES MINIMUM INPUT AND OUTPUT LEADS, UNIQUE
FEATURES OF THE OIGITAL DIFFERENTIAL ANALYZER ARE
THAT IT SOLVES A 3 X 3 DIRECTION COSINE MATRIX BY
MERELY CIRCULATING DATA AROUND A PAIR OF REGISTERS
AND ADDERS FOR EACH MATRIX ELEMENT AND USES A TWO-BIT
ADDER TO ADD, SUGTRACT, AND MULTIPLY BY Z TO THE NTH
POWER. (AUTHOR)

UNCLASSIFIED

DDC REPORT BIBL, OGRAPHY SEARCH CONTROL NO. O21492

```
AD=845 681L 16/4.2 15/5
    ARMY GENERAL EQU,PMENT TEST ACTIVITY FORT LEE VA
    SURFACE TRANSPORTABILITY TEST PORTION OF
    ENGINEERING AND GERVICE TEST OF PERSHING IA
    MISSILE SYSTEM.
DESCRIPTIVE NOTE: FINAL REPT.,
        OCT 68 48P FRANK,JOSEPH J.:
PROJ: RDT/E-1-x-279191-D-678, USATECOM-23000427
TASK: 1-X-279191-n-67802
```

 UNCLASSIFIED REPORT
 DISTRIBUTION: DOR ONLY: OTHERS TO COMMANDING
 GENERAL, ARMY TE ET AND EVALUATION COMMAND,
 ATTN: AMSTA-FA, ABERDEEN PROVING GROUND,
 MD. 21005.
 DESCRIPTORS: (*GU, DED MISSILESISURFACE-TO-
SURFA(E), TRANSPORTATIONI, TRAILERS, RAILROAD
CARS. CARGO SHIPS. MILITARY REQUIREMENTS,
LOGISTICS, HANDLING, ATTACHMENT, HOISTS,
METERS, MOUNTING BRACKETS, CABLES(MECHANICAL),
CABLE ASSEMBLIES, TRANSPORTER-ERECTORS, TACTICAL
WEAPONS
(U)
IDENTIFIERS: PERSHING. M-757 TRUCKS,
TRANSPORTABILITY, LOTSILOGISTICS OVER THE
SHORE), M-656 TRUCKS(5-TON), TIEDOWNS

```
TESTS WERE CONDUCTED TO DETERMINE THE SUITABILITY
OF THE PERSHING, A MISSILE SYSTEM FOR SURFACE
TRANSPORTABILITY BY HIGHWAY CARRIER, RAILCAR, SELF-
PROPELLED, AND MARINE CRAFT IOCEAN AND INLAND
WATERWAYS, AND LOGISTICS-OVER-THE-SHORE
(LOTS) OPERATIONG.

DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO, OZ1492
```

AD-840 260 16/4.2 5/3
PLANNING RESEARCH CORP LOS ANGELES CALIF
STUDY OF FUTURE PROJECT MANAGEMENT OPTIONS FOR THE
PERSHING PLA IPTG COUNTDOWN PROGRAM.
DESCRIPTIVE NOTE: TECHNICAL ADVISEMENT MEMO.,
SEP 68 29p FOSTER,R, W, ;
REPT, NO, 319-1, pRC-n-2031
CONTRACT: DAAHOI-\&8-C-2O40
UNCLASSIFIFD REPORT
DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF
COMMANDING GENERAL. ARMY MISSILE COMMAND,
ATTN: AMCPM-PE-ES, REDSTONE ARSENAL, ALA.
35809.
DESCRIPTORS: 1.GU,DED MISSILESISURFACE-TO-
SURFA(E), (HECKOUT PROCEDURES), (*MANAGEMENT
ENGINEERING, SCHEDULINGI, ANTITANK AMMUNITION,
MANAGEMENT CONTRO, SYGTEMS, MANAGEMENT PLANNING,
PROGRAMMING(COMPUTERS), EFFECTIVENESS, COSTS
IDENTIFIERS: PERSHING: CONFIGURATION MANAGEMENT
PROGRAM, PROGRAM DEVELOPMENT, XMGM-3 IA
MISSILES

THE TECHNICAL ADVISEMENT MEMORANDUM PRESENTS THE RESULTS OF MANAGFMENT EFFORTS IN STUDYING THE FOLLOWING TASK ACTIVITIES: REVIEW AND EVALUATE EFFECTIVENESS OF PRESENT CONTRACTOR METHODS FOR MANAGEMENT OF PR GGRAM DEVELOPMENT: EVALUATE PRESENT METHODS FOR CONFIGURATION MANAGEMENT OF PERSHING SOFTWARE: EVALUATE PRESENT MANAGEMENT TECHNIQUES FOR TESTING PERSHING SOFTWARE: AND DEVELOP RECOMMENDATIONS FOR NEW TECHNIQUES FOR MANAGEMENT CONTROL OF PERSHING COMPUTER PROGRAMMING. (AUTHOR)

```
    DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO. O21492
AD-822 567L 20/6 16/4 14/2
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA ARMY INERTIAL
    GUIDANCE AND CONTROL LAB AND CENTER
    AN EVALUATION OF DRCIS 3OOO-COUNT DIRECT AXIS OPTIGAL
    ENCODER,
        SEP 67 28p HUNTER,JOE S, ;
REPT, NO, RG-TR-67-25
PROJ: DA-15222901n375
            UNCLASSIFIED REPORT
    DISTRIBUTION: USGO: OTHERS TO ARMY MISSILE
    COMMAND, ATTN: AMSMI_RG, REDSTONE ARSENAL,
    ALA. 35809.
DESCRIPTORS: (*OPTICAL INSTRUMENTS, SENSITIVITY),
    (*GUIDED MISSILE COMPONENTS, INERTIAL NAVIGATION),
    (*DATA TRANSMISSION SYSTEMS, CODING), GUIDED
    MISSILES(SURFACE-TO-SURFACE), MOBILE, DIGITAL
    SYSTEMS, CONFIGURATION, DESIGN, SPECIFICATIONS,
    WEIGHT, ACCURACY, VOLTAGE,
    PERFORMANCE(ENGINFERING), SENSITIVITY,
    CALIBRATION, RETICLES, INTERFEROMETERS,
    COLLIMATORS, ACCEIEROMETERS
    (U)
IDENTIFIERS: ENCODERS, OPTICAL ENCODERS,
    PERSHING
                            (U)
THE PURPOSE OF THIS REPORT IS TO PRESENT THE
RESULTS OF AN EVALUATION CONDUCTED ON THE DYNAMICS
RESEARCH CORPORATION (DRC) 3OOO-COUNT
OPTICAL ENCODER. THE ENCODER WAS EVALUATED
FOR LINEARITY, PHASING BETWEEN CHANNELS AND VOLTAGE
SENSITIVITY. ALL TESTS WERE CONDUCTED USING A
PRECISION LEITZ NIVIDING HEAD. AN
AUTOCOLLIMATOR WAS USED TO INSURE MINIMUM ENCODER
SHAFT 'RUNOUT,' THE MANUFACTURER'S LINEARITY
SPECIFICATION OF + OR - 3O ARC SEC AND PHASING
IOR COUNT-TO-COUNT ACCURACY) SPECIFICATIONOF +
OR - 2S ELECTRICAL DEG WERE VERIFIED, NO
SPECIFICATION WAG GENERATED ON VOLTAGE SENSITIVITY.
THE RESULTS OBTAINED IN THIS EVALUATION OFFER
INFORMATION WHICH IS DIRECTLY APPLICABLE TO THE
PERSHING AMAB-2 ACCELEROMETER PROGRAM.
(AUTHOR)
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
 AD-803 224 9/2 16/4.2
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA ARMY INERTIAL
GUIDANCE AND CONTROL LAB
DESIGN OF A DIGITAL INTERFACE CONTROL UNIT,
JUL 6G IOP COPELAND,D, E, ;JONES,M.
C. ;
REPT, NO, RG-TR-6G-2!
PROJ: DA=1\times279191п678
UNCLASSIFIFD REPORT
DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF ARMY
MISSILE COMMAND, REDSTONE ARSENAL, ALA, 35809,
ATTN: AMSMI-RG.
DESCRIPTORS: (*DICITAL COMPUTERS, SURFACE
PROPERTIES), (*GU,DED MISSILES(SURFACE-TO-SURFACE),
DIGITAL COMPUTERS,, ADAPTERS,
PROGRAMMINGICOMPUTERS,, INPUT-OUTPUT DEVICES,
DESIGN, DATA STORAGE SYSTEMS, COMPUTER LOGIC,
TACTICAL WEAPONS
IDENTIFIERS: PERSHING, OR GATES,
PTS(PERSHING PROGRAMMER TEST STATION)
THIS REPORT PRESENTS A DESCRIPTION OF THE DESIGN
AND OPERATION OF A UNIT TO INTERFACE THE PRESENT
PERSHING PROGRAMMER TEST STATION COMPUTER WITH THE
NEWLY DEVELOPED IMPROVED PROGRAMMER TEST STATION
ADAPTER. THE DESIGN PROVED FEASIBLE AND
SATISFACTORILY OPERATED THE BREADBOARD MODEL, NO
HARDWARE OR CONSTRUCTION PROBLEMS WERE EVIDENT.
(AUTHOR)

```
    DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO, O21492
AD-674 653 5/3 5/1
    ARMY MATERIEL COMMAND WASHINGTON D C SYSTEMS AND COST
    ANALYSIS DIV
    MACROBEHAVIOR OF DEVELOPMENT COSTS AND ESTIMATES
    (STEC PLOTS).
DESCRIPTIVE NOTE: TECHNICAL REPT,,
            SEP 6B 28p SCHON,HORACE, II:
MONITOR: AMC TR-68-2
```

UNCLASSIFIFD REPORT

THIS REPORT PROV, DES THE MACROBEHAVIOR OF DEVELOPMENT COSTS AND ESTIMATES FOR THESE FIVE SYSTEMS: (1) PERGHING MISSILE SYSTEM: (2) SERGEANT MISSILE SYSTEM: (3) MSG1 (GAMA GOAT) TRUCK: (4) SHERIMAN VEHICLE: AND (5) ADVANCED AERIAL FIRE SUPPORT SYSTEM (AAFSS) (AHSGA). THE STEC PLOT IS DEVELOPED TO PRESENT THE NORMALIZED DEVELOPMENT DATA. A NEW RDTE QUANTITATIVE MACROBEHAVIOR MEASURE, THE EFFICACY RATING, IS DEVELOPED TO DESCRIBE, NOT JUDGE, THE DEVELOPMENT PHASF OF A WEAPON SYSTEM. (AUTHOR)

DDC REPORT BIBL $O G R A P H Y$ SEARCH CONTROL NO, 021492

```
AD-635 242 15/5 16/4 13/6
    ARMY TRANSPORTAT, ON ENGINEERING AGENCY FORT EUSTIS VA
    PERSHING TRANSPORTABILITY STUDY, FOREIGN RAILWAYS,
    VOLUME III.
DESCRIPTIVE NOTE: ENGINEERING REPT.
    JUL 66 39p GRIER, JOHN H, ;
REPT, NO, USATEA-&6-11-VOL-3,
```

 UNCLASSIFIFD REPORT
 SUPPLEMENTARY NOTE: SEE ALSO AD-635 242,
DESCRIPTORS: (GGU, DED MISSILES(SURFACE-TO-SURFACE),
LOGISTICS), (*RAILROAD CARS, GUIDED
MISSILES(SURFACE-TO-SURFACE), I *TRANSPORTATION:
GUIDED MISSILES(SURFACE-TO-SURFACE)), BOOSTER
MOTORS, RAILROADS, CONTAINERS, MOORING, SECOND-
STAGE MOTORS, IMPACT TESTS, SHOCK(MECHANICS),
VIBRATION, CHOCKS. HANDLING
IDENTIFIERS: FERSHING, M-475 CONTAINERS, M-476
CONTAINERS
FOREIGN RAILCARS WERE USED IN CONDUCTING RAIL
IMPACT TESTS ON PERSHING MISSILE SYSTEM FIRST AND
SECOND STAGE MOT RR CONTAINERS, XM 475 AND XM 476,
DATA FROM THE TEGTS WILL BE USED IN EVALUATING THE
EFFECTS OF THE FOREIGN RAIL ENVIRONMENT ON THE
CONTAINERS AND IN DETERMINING IF THE PROCEDURES USED
IN RESTRAINING THE CONTAINERS FOR CONUS RAIL
SHIPMENT WOULD BE APPLICABLE TO FOREIGN RAIL
SHIPMENT, THE CONUS RAIL SHIPMENT RESTRAINING
ARRANGEMENT EVALUATED DURING THIS STUDY WAS BASICALLY
IN CONFORMANCE WITH PAGES 4 AND 9 OF SAVANNA ARMY
DEPOT DRAWING NO, 54 25. RESULTS OF THE STUDY
SHOWED THAT THE CONTAINER SKID BOLTS DO NOT HAVE THE
REQUIRED STRUCTURAL STRENGTH TO RESIST THE DYNAMIC
LOADING IMPOSED BY RAIL IMPACTS, THE 1/2-INCH-
DIAMETER BOLTS ATTACHING THE SKID TO THE CONTAINER
EXPERIENCED SHEAR FAILURE AT IMPACT VELOCITIES OF 7
MILES PER HOUR WHEN THE CONTAINER SKID WAS NOT
ABUTTED FLUSH WITH THE FORKLIFT RECEPTACLE. THE
RESULTS OF THE STUDY ALSO INDICATED THAT THE
RESTRAINING ARRANGEMENT PROVIDING TRANSFER OF SHOCKS
INTO THE FORKLIFT RECEPTACLE RATHER THAN TO THE
CONTAINER SKIDS IS THE PREFERRED ARRANGEMENT.
(AUTHOR)

DDC REPORT BIBL, OGRAPHY SEARCH CONTROL NO. 021492

```
AD-635 240 15/5 16/4 13/6
    ARMY TRANSPORTATION ENGINEERING AGENCY FORT EUSTIS VA
    PERSHING TRANSPORTABILITY STUDY, CALCULATIONS AND
    ANALYSIS OF RAILWAY TESTS. VOLUME I.
DESCRIPTIVE NOTE: ENGINEERING REPT.
        JUL 66 29P GRIER, JOHN H. ;
REPT. NO, USATEA-66-11-VOL-1.
    UNGLASSIFIED REPORT
```

SUPPLEMENTARY NOTE: SEE ALSO AD-635 241,
DESCRIPTORS: (GUTDED MISSILES (SURFACE-TO-SURFACE),
LOGISTICS), (*RAILROAD CARS, GUIDED
MISSILES (SURFACE-TO-SURFACE). (*TRANSPORTATION,
GUIDED MISSILES (SURFACE-TO-SURFACE),
SHOCKS (MECHANICS) CONTAINERS, SECOND-STAGE
MOTORS, RAILROADS, IMPACT TESTS, BOOSTER MOTORS,
MOORING, LOADING(MECHANI(S), CHOCKS, CARGO,
VIBRATION, HANDLING
IDENTIFIERS: PERSHING, CONUS RAILWAYS, M-475
CONTAINERS, M-476 CONTAINERS

```
A STRESS ANALYSIG, BASED ON THE TEST LOADS IMPARTED
TO THE XM 475 AND XM 476 CONTAINERS IN THE
CONUS RAILWAY IMPACT TESTS, IS PRESENTED IN ORDER
TO COMPARE THE STRUCTURAL ADEQUACY OF THE TWO
DIFFERENT TYPES OF RESTRAINING ARRANGEMENTS EVALUATED
IN THE TESTS. REGULTS OF THE STRESS ANALYSIS,
WHICH CONFIRMED THE TEST RESULTS, DEMONSTRATE THAT
THE RESTRAINING ARRANGEMENT USED ON THE XM 47S
CONTAINER IS STR,1,CTURALLY ADEQUATE AND MEETS THE
REQUIREMENTS OF TB 55-100: WHEREAS, THE ARRANGEMENT
USED ON THE XM 47% CONTAINER IS NOT STRUCTURALLY
ADEQUATE AND DOES NOT MEET THE REQUIREMENTS.
MATHEMATICAL ENERGY RELATIONSHIPS WERE COMPUTED AND
USED AS A BASIS FOR COMPARING IMPACT LOADS TO THE
CARGO IN THE CON|S AND FOREIGN RAILWAY TESTS.
THE IMPACT CALCULATIONS VERIFY THE TEST RESULTS
WHICH SHOW THAT RAILCAR IMPACT LOADS TO THE CARGO ARE
MORE SEVERE FOR FOREIGN RAILCARS THAN FOR CONUS
RAILCARS AT SIMILAR IMPACT VELOCITIES. (AUTHOR)
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
 AD-607 324
LYON INC DETROIT MICH
DEVELOPMENT OF DFEP DRAWN, ONE-PIECE HIGH PERFORMANCE
ROCKET MOTOR CASE.
DESCRIPTIVE NOTE: GENERAL REPT, NO, 23 (FINAL), 1
JAN-SEP63.
SEP 64 12R MARTIN,WAYNE A. ;
CONTRACT: DAZO 01RORD23004

```
    UNCLASSIFIED REPORT
SUPPLEMENTARY NOTE:
DESCRIPTORS: ( *DR \({ }_{A} W_{I} N_{G}\) (MACHINE PROCESSING), ROCKET
    CASES) (*ROCKET CASES*. MANUFACTURING METHODS), (*ROCKET
    MOTORS (SOLID PROPELLANT), ROCKET CASES), TOOLS, DIES,
    STEEL, NICKEL ALLOYS, COBALT ALLOYS, MOLYBDENUM ALLOYS,
    GRAIN STRUCTURES , METALLURGY, , HEAT TREATMENT, TESTS,
    HYDROSTATICS, METAL FORMING PRESSES, MARAGING STEELS,
    MACHINING
    (U)
IDENTIFIERS: PERSHING (U)
THE GENERAL OBJECTIVE OF THIS CONTRACT IS TO
UTILIZE THE HOT CUP-COLD DEEP DRAW FABRICATION METHOD
TO DEVELOP IMPROVED MONOLITHIC ROCKET MOTOR CASES FOR
40.' (AND OVER) DIAMETER SOLID PROPELLANT
ROCKETS. THE SPECIFICE GOALS ARE: 1. THE
DEVELOPMENT OF RELIABLE MOTOR CASES WITH HOOP STRESS
LIMITS SUBSTANTIALLY IN EXCESS OF 200, OOO PSI
STEEL EQUIVALENT: 2. A CAPABILITY OF FABRICATION
WITH REASONABLE EASE ON AN INDUSTRIAL SCALE, 3, A
PRODUCIBILITY PROVEN BY RELIABILITY TESTS AT FINAL
FULL SCALE, 4. THE ORJECTIVE IS TO BE
ACCOMPLISHED UTILIZING THE PERSHING IND STAGE MOTOR
CASE CONFIGURATION.

\section*{UNCLASSIFIED}

DDC REPORT BIBL, OGRAPHY SEARCH CONTROL NO. 021492
```

AD-602 356
PICATINNY ARSENAL DOVER N J AMMUNITION ENGINEERING
DIRECTORATE
XM15 RELIABILITY TEST EQUIPMENT PROGRAM CONNECTOR
SWITCH TEST CONSOLE,
JUN 64 116P MAGGIO,FRANK G. :HALL,WILLIAM
N. :
MONITOR: PA TM1438
UNCLASSIFIFD REPORT
SUPPLEMENTARY NOTE.
DESCRIPTORS: (*GU,DED MISSILE COMPONENTS, CHECKOUT
EQUIPMENT), (*ELECTRIC SWITCHES, TEST SETS), (*TEST
SETS, DESIGN), ELFCTRIC CONNECTORS, RELIABILITY, TEST
EQUIPMENT (ELECTRONICS), ELECTRIC INSULATION, RESISTANCE
(ELECTRICAL), OHMMETERS, TIME INTERVAL COUNTERS, CONTROL
PANELS, CALIBRATION. CHECKOUT PROCEDURES (U)
IDENTIFIERS: PERSHING (U)
A CONNECTOR SWITCH TEST CONSOLE WAS DESIGNED TO
PROVIDE QUALIFICATION TESTING OF THE SAFING AND
ARMING, AND POWER DISCONNECT SWITCHES IN THE
PERSHING MISSILE SYSTEM FOR THE RELIABILITY
TEST PROGRAM. (AUTHOR)

DOC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492

```
AD-481835 16/4.2 17/7
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
    RELIABILITY EVALUATION LAB
    PRESSURE TEST: PFRSHING GUIDANCE AND CONTROL AFT
    PRESSURE DOME.
                                    (U)
        AUG 1OP KANAAN,M, J, IHARGETT,J, A.
    ;
PROJ: DA-516-05-0,1
MONITOR: AMC-RA RT-TM-63-51
```

UNCLASSIFIED REPORT
DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF ARMY MISSILE COMMAND, REDSTONE ARSENEL, ALA, 35809 .

```
DESCRIPTORS: (*GU,DED MISSILES(SURFACE-TO-
    SURFACE), PRESSURE VECSELSI, GUIDED MISSILE
    COMPONENTS, MOBILE, ARMY, TACTICAL WEAPONS,
    COMMAND + CONTROL SYSTEMS, INSTRUMENTATION,
    PRESSURIZATION, PFRFORMANCE(ENGINEERING),
    STRUCTURAL PROPERTIES, DESIGN, CONSTRUCTION
IDENTIFIERS: PERSHING, PRESSURE DOMES (U)
THIS REPORT DESCRIEES A SERIES OF TESTS PERFORMED
ON A PROPOSED AFT PRESSURE DOME FOR THE PERSHING
GUIDANCE AND CONTROL SECTION. TESTS WERE
CONDUCTED TO DEMONSTRATE THE STRUCTURAL INTEGRITY OF
AN EASILY REMOVAGLE AFT PRESSURE DOME.
(U)
```


UNCLASSIFIED

```
    DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO, 021492
AD-478 999 14/2
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA ARMY INERTIAL
    GUIDANCE AND CONTROL LAB
    PERSHING ALIGNMENT AMPLIFIER TESTS,
        JAN 66 57F WHITE,H, V. ;
PROJ: DA-1\times279191n678
MONITOR: AMC-RA RG-TR-66-2
```

 UNCLASSIFIFD REPORT
 DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF ARMY
 MISSILE COMMAND, REDSTONE ARSENAL, ALA, 35809.
 ATTN: AMSMI-RG.
 DESCRIPTORS: (*AMPLIFIERS, ALIGNMENT), TESTS,
TEST EQUIPMENT(ELECTRONICS), GUIDED
MISSILES(SURFACE-TO-SURFACE), TACTICAL WEAPONS (U)
IDENTIFIERS: PERSHING

```
THE NEWLY DESIGNED PERSHING ALIGNMENT AMPLIFIER,
A UNIT OF THE IMPROVED PROGRAMMER TEST STATION, WAS
SUBJECTED TO LABORATORY TESTS, BENCH, SYSTEM, AND
INTEGRATOR CUTOFF TESTS WERE PERFORMED ON THE
ENGINEERING MODE, , ADEQUATE PERFORMANCE WAS
OBTAINED FROM THE BENCH AND SYSTEM TESTS. LESS
SATISFACTORY RESULTS WERE OBTAINED FROM THE
INTEGRATOR CUTOFF TEGT, SIMILAR TESTING OF
FORTHCOMING UNITS IS RECOMMENDED TO GAIN FURTHER
CONFIDENCE IN THE NEW DESIGN SINCE ONLY ONE UNIT WAS
AVAILABLE FOR TEGTING AT THIS TIME, (AUTHOR)

DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO. 021492
```

AD-477 025 14/4 5/9
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA GROUND SUPPORT
EQUIPMENT LAB
PERSHING MISSILE TRAINER WEAPON SYSTEM ENGINEERING
EVALUATION TEST REQUIREMENTS.
JAN 63 33P EUBANKS,J,E, ,JR,:BRANTLEY,
L. W, ,JR:HAMMOND,K. J. :
PROJ: DA-516-05-0,1
MONITOR: AMC-RA RL-TN-63-4

```

UNCLASSIFIFD REPORT
DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF ARMY MISSILE COMMAND, REDSTONE ARSENAL, ALA,

DESCRIPTORS: (*RE, IABILITY, *GUIDED MISSILE SIMULATORSI, GUIDED MISSILE COMPONENTS, ARMY, GUIDANCE, OPTIMIZATION, CONTROL SYSTEMS, MOBILE, ACCELEROMETERS, PFRFORMANCE (ENGINEERING)
IDENTIFIERS: PERSHING

THIS DOCUMENT DEFINES THE WEAPON SYSTEM
EVALUATION TEST REQUIREMENTS WHICH WILL BE
ACCOMPLISHED TO DETERMINE SATISFACTORY PERFORMANCE AND RELIABILITY OF COMPONENTS PROGRAMMED FOR BLOCK
III TRAINER INSTALLATION. BLOCK III COMPONENTS
ANDIOR MODIFICAT,ONS WILL BE INCORPORATED WITH THE
SYSTEMS OF GUIDED MISSILE TRAINER IGMT-P
OO2). BLOCK II HYDRAULIC ACTUATOR SIMULATORS
WILL BE UTILIZED DURING THE TEST AND REMAIN WITH THE
TRAINER UPON COMDLETION. THE ORDER AND METHOD OF
TESTING WILL BE UNDER THE DIRECTION OF ENGINEERING
PERSONNEL OF THE GSE LAB: HOWEVER, IT WILL
GENERALLY CONFORM TO THE FOLLOWING TEST OUTLINES.
THE TRAINER WILL BE TESTED IN THE HORIZONTAL
POSITION, THE SE CTIONS WILL BE SEPARATED WITH THE USE
OF SECTION EXTENDER CABLES, UNLESS OTHERWISE STATED.
(AUTHOR)
```

 DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO. 021492
    ```
```

AD-475 956 16/2 16/3
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
RELIABILITY EVALUATION LAB
PERSHING REENTRY BODY SPIN SYSTEM QUALIFICATION TEST,

```
```

 FEB 63 96p
 PROJ: DA-516-05-011
MONITOR: AMC-RA RT-TM-62-60

```
```

 UNCLASSIFIFD REPORT
 DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF ARMY
 MISSILE COMMAND, REDSTONE ARSENAL, ALA,
    ```
DESCRIPTORS: \(1 * R E\) FNTRY VEHICLES, SPIN
    STABILIZATION), NOSE CONES, GUIDED
    MISSILES (SURFACE-TO-SURFACE), DISKS, RUPTURE,
    EXHAUST VALVES, GAS GENERATING SYSTEMS, EXPLOSIVES
    INITIATORS, IGNITERS, ATMOSPHERE ENTRY,
    MALFUNCTIONS, NOZZLES*. TEST METHODS,
    ENVIRONMENTAL TESTS, SPACE ENVIRONMENTAL CONDITIONS,
    IGNITION, RELIABILITY, SPECIFICATIONS, NUCLEAR
    WARHEADS, TACTICAL WEAPONS, GUIDED MISSILE WARHEADS (U)
IDENTIFIERS: PERSHING, SPIN SYSTEMS, M-30
    WARHEADS
        TESTS WERE CONDUCTED TO DETERMINE IF THE PERSHING
        REENTRY BODY SPIN SYSTEM WILL FUNCTION
        PROPERLY UNDER THE ANTICIPATED PERSHING
        ENVIRONMENTAL CONDITIONS. A TOTAL OF TWELVE BURST
        DISCS, THIRTY-SIX IGNITERS, AND TWENTY-THREE SPIN
        SYSTEMS WERE SUBJECTED TO ENVIRONMENTAL TREATMENTS
        AND TESTED AT REDSTONE ARSENAL. ALABAMA. THE
        BURST DISCS, IGN,TERE, AND SPIN SYSTEMS QUALIFIED,
        (AUTHOR)

\section*{UNCLASSIFIED}
```

 ODC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
 AD-475 954 16/1
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
RELIABILITY EVALUATION LAB
TEST PLAN FOR DROP TESTING THE ELECTRICAL SHOP OF THE
PERSHING MISSILE SYSTEM,
APR 63 5p KANAAN ,M, J. ;
PROJ: DA-516-05-011
MONITOR: AMC-RA RT-TN-63-47

```
            UNCLASSIFIED REPORT
    DISTRIGUTION: NO FOREIGN WITHOUT APPROVAL OF ARMY
    MISSILE COMMAND, REDSTONE ARSENAL. ALA.
DESCRIPTORS: ( MA, NTENANCE EQUIPMENT, DROP
    TESTING), CHECKOUT EQUIPMENT, ELECTRICAL EQUIPMENT,
    SHOCK (MECHANICS), MOBILE, MEASURING
    DEVICES(ELECTRICA1 + ELECTRONIC), GUIDED
    MISSILES (SURFACE-TO-SURFACE), MECHANICAL PROPERTIES,
    ACCELEROMETERS, TRANSPORTATION
        (U)
IDENTIFIERS: PERSHING
```

THIS TEST PLAN DESCRIBES A METHOD OF TESTING THE
FIELD MAINTENANCF ELECTRICAL SHOP OF THE
PERSHING MISSILE SYSTEM TO SIMULATE CONDITIONS
THAT ARE EXPECTEN DURING TRANSPORTATION, (AUTHOR) (U)

```

DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO. 021492
```

AD=474 846 16/4.2
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
RELIABILITY EVALUATION LAB
ENGINEERING EVAL|ATION TESTS ON THE PERSHING GUIDED
MISSILE TRAINER.
DESCRIPTIVE NOTE: PHASE REPT, 23 JAN-26 MAR 63,
OCT 63 4IP GASSAWAY , JOHN F, :SMITH,
BRIMAGE L. ;
PROJ: DA-516-05-0,1
MONITOR: AMC-RA RT-TM=63-45

```
            UNCLASSIFIFD REPORT
    DSTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF ARMY
    MISSILE COMMAND, REDSTONE ARSENAL, ALA.
DESCRIPTORS: \(1 * G U, D E D\) MISSILESISURFACE-TO-
    SURFACE), TRAINING DEVICES), ( GUIDED MISSILE
    SIMULATORS, *TRAINING DEVICESI, GUIDED MISSILE
    COMPUTERS, CONTROL SYETEMS, ACCELEROMETERS,
    AMPLIFIERS, PERFORMANCE (ENGINEERING),
    ACCEPTABILITY, VOLTAGE, MEASUREMENT
IDENTIFIERS: PERSHING

DURING THE ENGINEERING EVALUATION TESTS, THE FOLLOWING BLOCK III TRAINER COMPONENTS WERE TESTED: CONTROL COMPUTER, GUIDANCE COMPUTER, STATIC INVERTERS, ST- 120 PLATFORM SIMULATOR, ACCELEROMETER SIMULATOR, AND TYPE X WARHEAD PRESETTING. THESF TESTS WERE CONDUCTED TO VERIFY THAT CHANGED COMPONENTS OF THE PERSHING BALLISTIC GMT ARE CAPABLE OF SATISFACTORY PERFORMANCE, (AUTHOR)

DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO, 021492
```

AD=474 822 16/3 16/4.2
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
RELIABILITY EVALUATION LAB
PERSHING WARHEAD SEPARATION (PAL) TEST, (U)
MAR 64 34P LAWSON,HARVEL T, ;
PROJ: DA-516-05-011
MONITOR: AMC-RA RT-TM-64-1!

```
            UNCLASSIFIED REPORT
        DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF ARMY
        MISSILE COMMAND, REDSTONE ARSENAL, ALA,
DESCRIPTORS: \((* G U, D E D\) MISSILE WARHEADS,
    SEPARATIONI, TESTG, ELECTRIC CABLES, CORDAGE,
    DISCONNECT FITTINGS. PITCH(MOTION), YAW,
    RANGES(DISTANCE), ACCELERATION,
    STRAIN(MECHANICS): FORCE (MECHANICS),
    GUIDED MISSILES (S IIRFACE-TO-SURFACE) ,
    PERFORMANCE (ENGINEERING), EXPERIMENTAL DATA (U)
IDENTIFIERS: PERSHING

THIS REPORT SUMMARIZES THE RESULTS OF A SERIES OF PERSHING WARHEAD SEPARATION TESTS. THESE
TESTS WERE CONDUCTED TO ESTABLISH A BASIS FOR COMPARING THE NE WLY DESIGNED PAL CABLE SYSTEM WITH THE TACTICAL GUIDANCE AND CONTROL SECTION TO WARHEAD CABLES. THE GUIDANCE AND CONTROL SECTION AND THE WARHEAD FROM MISSILE 303 WERE UTILIZED FOR THE TESTS, THESE COMPONENTS WERE MOUNTED HORIZONTALLY IN A SPECIAL TEST FIXTURE WHICH ALLOWED THE WARHEAD TO ACCELERATE DOWN A FIXED TRACK UPON SEPARATION. A TOTAL OF SEVEN SEPARATION TESTS WERE CONDUCTED: THESE TESTS INCLUDED A SERIES OF THREE WITH THE PAL SYSTEM, THREE WITH THE TACTICAL SYSTEM, AND ONE WITH NO INTERCONNECTING CABLES TO ISOLATE ERRORS INDUCED BY SIMULATED TEST CONDITIONS. THE TEST DATA INDICATE ADVANTAGES OF THE PAL SYSTEM OVER THE TACTICAL GUIDANCE AND CONTROL SECTION TO WARHEAD CABLES AND CONNECTORS. (AUTHOR)

DDC REPORT BIBL, OGRAPHY SEARCH CONTROL NO. 021492
```

AD-473 972
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
RELIABILITY EVALUATION LAB
MARRIAGE OF PERSHING GUIDED MISSILE TRAINER IGMT-P-
002) XM19 WITH ARTILLERY SET NO. 1.
(U)
DESCRIPTIVE NOTE: PHASE REPT,.
FEB 63 B7P GASSAWAY , JOHN F. ;SMITH,
BRIMAGE L. ;
REPT, NO, RT-TN-6z-50
PROJ: DA-516-05-011
UNCLASSIFIED REPORT
NO PUBLIC OR FOREIGN RELEASE,
DESCRIPTORS: (*GU,DED MISSILES(SURFACE-TO-SURFACE),
*GROUND SUPPORT EQUIPMENT,. ARTILLERY,
COMPATIBILITY, TRAINING DEVICES, GUIDED MISSILE
COMPONENTS, PERFORMANCE(ENGINEERING), TABLES
(U)
IDENTIFIERS: PERSHING
THE PURPOSE OF THE MARRIAGE TESTS IS THREEFOLD: (1) TO DETERMINE IF THE PERSHING GUIDED MISSILE TRAINER XMI9 IS COMPATIBLE WITH THE UNITS OF GROUND SUPPORT EQUIPMENT, (2) TO DETERMINE THE VALIDITY OF THE DATA TAKEN WITH THE TEST CONSOLE DURING ENVIRONMENTAL TESTING, AND (3) TO RESOLVE ANY INCOMPATIBILITIES AND THEREBY PERMIT AMICOM PERSONNEL OF THE GROUND SUPPORT EQUIPMENT LABORATORY TO UTILIZE ARTILLERY SET NO. 1 TO VERIFY OPERATION OF GMT-P-OOZ DURING THE ENGINEERING EVALUATION TESTS OF BLOCK III COMPONENTS. THIS PHASE REPORT COVERS REFURBISHMENT, MODIFICATIONS TO AND SHIPMENT OF THE TRAINER, AT REDSTONE ARSENAL, ALSO, RECEIVING, CONSOLE EVALUATION, AND THE MARRIAGE TEST PROGRAM AT MARTIN/ORLANDn. SUBSEQUENT PHASE REPORTS WILL COVER THE REMAINING TESTS AT THE MARTIN COMPANY. (AUTHOR)

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
AD-473 970
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
    RELIABILITY EVALUATION LAB
    TEST PLAN FOR RAILROAD HUMPING THE ELECTRICAL AND
    REPAIR PARTS SHOPS OF PERSHING MISSILE SYSTEM, (U)
        FEB 63 7P KANAAN,M, J. IBATSON,J.L.
    :
REPT, NO, RT-TN-67-38
PROJ: DA-516-05-0,1
    UNCLASSIFIFD REPORT
    NO PUBLIC OR FOREIGN RELEASE.
DESCRIPTORS: (*GU,DED MISSILES(SURFACE-TO-SURFACE),
    *MAINTENANCE EQUIPMENT), (*GROUND SUPPORT EQUIPMENT,
    GUIDED MISSILES), RAILROAD CARS, TRANSPORTATION,
    TEST METHODS, IMPACT SHOCK, MAINTENANCE, SPARE
    PARTS, ELECTRICAL EQUIPMENT, INSTRUMENTATION
IDENTIFIERS: PERSHING. TRANSPORTABIL!TY (U)
THIS TEST PLAN DESCRTBES A METHOD OF TESTING THE
FIELD MAINTENANCF ELECTRICAL SHOP AND THE REPAIR
PARTS SHOP OF THF PERSHING WEAPON SYSTEM UNDER
THE CONDITIONS THAT ARE EXPECTED DURING RAIL
TRANSPORTATION, THE TEST WILL BE CONDUGTED AT
REDSTONE ARSENAL BY TEST AND EVALUATION
LABORATORY, DIRECTORATE OF RESEARCH AND
DEVELOPMENT, U. S. ARMY MISSILE COMMAND,
(AUTHOR)

\section*{UNCLASSIFIED}

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
```

AD-472 750
ARMY BALLISTIC MISSILE AGENCY REDSTONE ARSENAL ALA
PERSHING QUALITY REPORT NUMBER II FOR APRIL
1960.
JUN 60 93p
REPT. NO. ABMA-DRR-TM-26-60
UNCLASSIFIED REPORT
NO PUBLIC OR FOREIGN RELEASE.
DESCRIPTORS: (*GUTDED MISSILES(SURFACE-TO-SURFACE),
QUALITY CONTROLI, GUIDED MISSILE COMPONENTS,
RELIABILITY, VISUGL INSPECTION, DATA,
ANALYSIS
(U)
IDENTIFIERS: PERSHING
(U)
THIS IS THE ELEVENTH MONTHLY OUALITY REPORT FOR THE PERSHING WEAPON EYSTEM AND ITS PURPOSE IS TO PRESENT MANAGEMENT WITH A GENERAL PICTURE OF THE OVERALL QUALITY OF THE PWS AS REFLECTED FROM INSPECTION AND TEST RESULTS SUBMITTED TO THE ANALYSIS AND QUALITY ENGINEERING SECTION, RELIABILITY BRANCH, SYSTEMS ANALYSIS AND RELIABILITY LABORATORY BY THE MARTIN COMPANY. (AUTHOR)

```
    DDG REPORT BIBL,OGRAPHY SEARCH CONTROL NO, O21492
AD-472 748
    ARMY BALLISTIC MISSILE AGENCY REDSTONE ARSENAL ALA
    ABMA REQUIREMENTS FOR ORDNANCE INSPECTION PERSHING
    GUIDANCE AND CONTROL SYSTEM BENDIX CORPORATION,
    ECLIPSE-PIONEER DIVISION,
        JUN 6O 7p JONES ,B. F. ;HARRELL,
    WILLIAM B. ;
REPT, NO, ABMA=DRR=TM-21-60
            UNCLASSIFIFD REPORT
    NO PUBLIC OR FOREIGN RELEASE.
DESCRIPTORS: (*CONTROL SYSTEMS, GUIDED
    MISSILES(SURFACE-TO-SURFACE)), (*GUIDANCE, CONTROL
    SYSTEMS), QUALITY CONTROL, GUIDED MISSILE COMPONENTS (U)
IDENTIFIERS: PERSHING
(U)
    REQUIREMENTS FOR ORDNANCE INSPECTION DURING THE
    DEVELOPMENT OF THE PERSHING GUIDANCE AND CONTROL
    SYSTEM.
```

```
UNCLASSIFIED
```

DDC REPORT BIBLTOGRAPHY SEARCH CONTROL NO. 021492

```
AD-472 746
    ARMY BALLISTIC MISSILE AGENCY REDSTONE ARSENAL ALA
    PERSHING MISSILE SYSTEM PREFLIGHT CERTIFICATION TEST
    RESULTS LEV=3 MOD. II AUTO-PILOT,
        FEB 60 24p LIDE,WILTONCC, JR,:
REPT.NO. ABMA=DG-TM-6-60
            UNCLASSIFIED REPORT
    NO PUBLIC OR FOREIGN RELEASE.
DESCRIPTORS: (*GUIDED MISSILES(SURFACE-TO-SURFACE),
    AUTOMATIC PILOTS), (*AUTOMATIC PILOTS,
    PERFORMANCE(ENGINEERING), ATTITUDE CONTROL SYSTEMS,
    ENVIRONMENTAL TESTS, TEMPERATURE, VIBRATION,
    ROLL, YAW, PITCH(MOTION), CAPTIVE TESTS,
    SHOCK(MECHANICS), ACCELERATION, GYROSCOPES,
    ACCEPTABILITY, ACTELEROMETERS. TELEMETERING DATA.
    AZIMUTH, DESIGN
    (U)
IDENTIFIERS: PERSHING
(U)
THE TESTS AND REGULTS PRESENTED IN THIS REPORT ARE
TO ESTABLISH THAT THE LEV-3 MOD. II AUTO-
PILOT WILL FUNCT,ON PROPERLY UNDER THE ANTICIPATED
PERSHING R+D ENVIRONMENTAL CONDITIONS. THE
LEV=3, MOD. II AUTO-PILOT IS AN ATTITUDE
REFERENCE SYSTEM" CONSISTING OF A PITCH GYRO, A YAW-
ROLL GYRO, A PIT,H PROGRAM TRANSMISSION, AN
INTEGRATING GYRO ACCELEROMETER TO PROVIDE TELEMETRY
DATA OF MISSILE VELOCITY AND AN OPTICAL PRISM FOR
AZIMUTH ALIGNMENT, (AUTHOR)
```

 ODC REPORT BIBL,OGRAPHY SEARCH CONTROL NO. O21492
 AD-469 068
MARTIN CO ORLANDO FLA
MICROLOGIC ELEMENTS, FAIRCHILD SEMICONDUCTOR CORP,
BUFFER, HALF SHIFT, COUNTER, GATE AND HALF ADDER,
DESCRIPTIVE NOTE: PERSHING EVALUATION TEST REPT.
JUN 64 99p
REPT, NO, OR-5944
CONTRACT: DAOI OOQORD1OO1
UNCLASSIFIFD REPORT
NOFORN
SUPPLEMENTARY NOTE:
DESCRIPTORS: 1*GU,DED MISSILE COMPUTERS, ELECTRONIG
EQUIPMENT), (*COMPUTER LOGIC, NON-DESTRUCTIVE
TESTINGI, CIRCUITS,
MICROMINIATURIZAT,ON(ELECTRONICS),
GATES(CIRCUITS), TNPUT-OUTPUT DEVICES, PULSE
COUNTERS, COUPLING CIRCUITS, GUIDED
MISSILES(SURFACE-TO-SURFACE). TACTICAL WEAPONS (U)
IDENTIFIERS: PERSHING
THE MICROLOGIC EI EMENTS TESTED WERE THE FOLLOWING:
BUFFERS, GATES, HALF ADDERS, COUNTERS, AND
SHIFT REGISTERS, TESTS WERE PERFORMED TO
DETERMINE IF THE ELEMENTS MEET THE REQUIREMENTS OF
THE PERSHING WEAPON SYSTEM AS SPECIFIED ON THE
ORDNANCE DRAWINGS, (AUTHOR)

DDC REPORT BIBLTOGRAPHY SEARCH CONTROL NO. O21492

```
AD=468 281
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA PHYSICAL
    SCIENCES LAB
    COMPARISON OF UPPER-AIR CONDITIONS OVER WSMR, UTAH,
    AND GERMANY.
        JUN 65 OOP DUDEL,HELMUT P. :
REPT, NO, RR-TR-6 E-9
PROJ: DA-1-X-279191-D-678
```

 UNCLASSIFIED REPORT
 SUPPLEMENTARY NOTE:
DESCRIPTORS: (©CLIMATOLOGY, HIGH ALTITUDE), NEW
MEXICO, UTAH, WEST GERMANY, ATMOSPHEIC
TEMPERATURE, DENSITY, WIND, PERIODIC VARIATIONS,
STATISTICAL DATA, RADIOSONDES, GUIDED
MISSILES(SURFACE-TO-SURFACE), METEOROLOGICAL
PARAMETERS, LOW ALTITUDE, DATA, TABLES
IDENTIFIERS: PERSHING

```
DATA ARE PRESENTED WHICH SHOW THE DIFFERENCES
BETWEEN UPPER-AIR CONDITIONS OVER WSMR, UTAH.
SOUTHERN GERMANY, AND NORTHERN GERMANY,
UPPERAIR PARAMETERS DISCUSSED ARE: MEAN
TEMPERATURE, MEAN DENSITY, DENSITY VARIABILITY
(ONE-SIGMA VALUEG), MEAN SCALAR WIND SPEED, AND
MOST FREQUENT WIND DIRECTION. TWO KINDS OF
GRAPHICAL PRESENTATIONS ARE USED: VERTICAL PROFILES
FOR SUMMER AND WTNTER IN THE ALTITUDE INTERVAL
SURFACE TO 25 KM ABOVE MEAN SEA LEVEL, AND CURVES OF
MONTH=TO-MONTH VARIATION FOR SELECTED ALTITUDE
LEVELS. (AUTHOR)

DDC REPORT BIBLTOGRAPHY SEARCH CONTROL NO. 021492
\(A D-463910 \mathrm{~L}\)
PICATINNY ARSENAL DOVER N J FELTMAN RESEARCH LABS
EFFECTS OF IMPULSIVE LOADING ON REENTRY
VEHICLES.
(U)

DESCRIPTIVE NOTE: TECHNICAL REPT, ,
JUN 65 93p ROSENDORF, LAWRENCE ;
MONITOR: PA TR-3 227
UNCLASSIFIED REPORT
NOTICE: RELEASE ONLY TO U, S, GOVERNMENTAGENCIES
IS AUTHORIZED, OTHER CERTIFIED RE-QUESTERS SHALL OBTAIN RELEASE APPROVAL FROMTECHNICAL INFORMATION BRANCH,
PICATINNY ARSENAL, DOVER, N, J.
SUPPLEMENTARY NOTE: REPORT ON OPERATION SNOWBALL -
PROJECT 1.5.

DESCRIPTORS: ( RREENTRY VEHICLES, BLAST), ( ENOSE CONES,
BLAST), PRESSURE, EXPLOSION EFFECTS, RANGES (DISTANCE),
CYLINDRICAL BODIES, CONICAL BODIES, STRAIN(MECHANICS),
MODEL TESTS, LOAD, NG (MECHANICS), VULNERABILITY,
COMPOSITE MATERIA, S, PHENOLIC PLASTICS, ALUMINUM,
HEMISPHERICAL SHELLS, EXPERIMENTAL DATA, GRAPHICS,
PHOTOGRAPHS, ANTIMISSILE DEFENSE SYSTEMS, EXPLOSIONS (U)
IDENTIFIERS: SNOWBALL OPERATION, PERSHING (U)
THE FINAL RESULTG ARE PRESENTED OF PROJECT 1.5 OF OPERATION SNOWBALL. TWENTY-ONE SIMPLE SHELL MODELS (CONES AND CYLINDERS), POSITIONED AT DISTANCES VARYING FROM 320 TO 980 FEET FROM GROUND ZERO, WITH SIDE-ON AND HEAD-ON ORIENTATIONS, WERE SUBJECTED TO A 5OO-TON TNT EXPLOSION ON 17 JULY 1964. THRESHOLD DAMAGE OCCURRED AT ABOUT HALF THE PREDICTED PRESSURES FOR CYLINDERS AND AT ABOUT . 65 OF PREDICTED VALUES FOR CONES. THE HEAD-ON MODELS WITHSTOOD ABOUT TWICE AS MUCH PRESSURE AS THE SIDEOON ONES. RUPTURE OCCURRED AT ABOUT 3 TIMES THE EXPERIMENTALLY DFTERMINED THRESHOLD DAMAGE PRESSURE FOR THE CYLINDERG, AND AT ABOUT 1.65 TIMES THE EXPERIMENTALLY D FTERMINED THRESHOLD DAMAGE PRESSURE FOR THE CONES. FORTY CHANNELS OF INSTRUMENTATION WERE PROVIDED FOR THE TEST, 20 OF REFLECTED PRESSURE AND 20 OF STRAIN', GOOD PRESSURE-TIME RECORDS WERE OBTAINED FOR BOTH HEAD-ON AND SIDE-ON CYLINDERS, (AUTHOR)

DDC REPORT BIBL, OGRAPHY SEARCH CONTROL NO, O21492
```

AD-460 62OL
SOUTHWEST RESEARCH INST SAN ANTONIO TEX DEPT OF AUTOMOTIVE
RESEARCH
DEVELOPMENT OF A PROTOTYPE SELF-CLEANING FILTER FOR
THE PERSHING MISSILE POWER STATION GAS TURBINE. (U)
DESCRIPTIVE NOTE: FINAL TECHNICAL REPT,.,
DEC 64 49% MERIWETHER,ROSS F. ;
REPT. NO. AR-557
CONTRACT: DA44 OOQENGS245
PROJ: 111240

```
            UNCLASSIFIFD REPORT
    NOTICE: RELEASE ONLY TO U. S. GOVERNMENTAGENCIES
    IS AUTHORIZED. OTHER CERTIFIED REQUEST-ERS SHALL OBTAIN
    RELEASE APPROVAL FROM ARMYENGINEER RESEARCH AND
    DEVELOPMENT LABS., FORTBELVOIR, VA. 22060 .
SUPPLEMENTARY NOTE:
DESCRIPTORS: (*LAUNCHING SITES, POWER SUPPLIES), (*POWER
    SUPPLIES, GAS TURBINES), (GAS TURBINES, FILTERS
    (FLUIO)), (*FILTERS (FLUID), AIR), DESIGN, OPERATION,
    FEASIBILITY STUDIFS, TURBINES, DUST, EROSION, REDUCTION,
    EFFECTIVENESS, CLEANING, AUTOMATIC, MAINTENANCE, LIFE
    EXPECTANCY, MECHANICAL DRAWINGS, PRESSURE, VALVES,
    ACTUATORS, COTTON TEXTILES, GLASS TEXTILES, PENETRATION,
    PARTICLES, DACRON. REINFORCING MATERIALS, GUIDED
    MISSILES (SURFACE_TO-SURFACE)
IDENTIFIERS: LEAKG (FLUIDS), PERSHING ..... (U)


DDC REPORT BIBL OGRAPHY SEARCH CONTROL NO, O21492
```

AD-460 576L
SOUTHWEST RESEARCH INST SAN ANTONIO TEX DEPT OF AUTOMOTIVE
RESEARCH
DEVELOPMENT OF A PROTOTYPE SELF-CLEANING FILTER FOR
THE PERSHING MISSILE POWER STATION GAS TURBINE.
PHASE II.
DESCRIPTIVE NOTE: TECHNICAL REPT.,
OCT 64 IV MERIWETHER,ROSS F ;
REPT. NO, AR=549
CONTRACT: DA44 OOQENG }224
PROJ: 11-1240

```
    UNCLASSIFIFD REPORT
    NOTICE: RELEASE ONLY TO U. S. GOVERNMENTAGENCIES
    IS AUTHORIZED. OTHER CERTIFIED RE-QUESTERS SHALL OBTAIN
    RELEASE APPROVAL FROMARMY ENGINEER RESEARCH AND
    DEVELOPMENT LABS', FORT BELVOIR, VA.
SUPPLEMENTARY NOTE:
DESCRIPTORS: ( © \(A_{U N C H I N G ~ S I T E S, ~ P O W E R ~ S U P P L I E S), ~(* P O W E R ~}^{\text {II }}\)
    SUPPLIES, GAS TURBINES), (GAS TURBINES, FILTERS
    (FLUID)), (*FILTERS (FLUID), AIR), DESIGN, FEASIBILITY
    STUDIES, CLEANING, AUTOMATIC, MECHANICAL DRAWINGS,
    OPERATION, CONTROL, DRIVES, CONTAMINATION, DUST, SEALS
    (STOPPERS), RUBBER, SYNTHETIC RUBBER, HALOCARBON
    PLASTICS, MAINTENANCE, GUIDED MISSILES ISURFACE-TO-
    SURFACE)
IDENTIFIERS: PERSHING* NEOPRENE, TEFLON (U)

THE SUSCEPTIBILITY OF GAS TURBINE ENGINES TO THE INGESTION OF EVEN LIGHT CONCENTRATIONS OF AIRBORNE DUST WAS DEMONSTRATED BY A SERIES OF RECENT TESTS AT SOUTHWEST RESEARCH INSTITUTE. THESE TESTS REVEALED THE NEE FOR AN AIR FILTER FOR THE PERSHING SUPPORT TURBINE, AND LOGISTIC CONSIDERATIONS D,CTATED THAT THE AIR FILTER BE SELF CLEANING, THE FIRST PHASE OF THIS SELFCLEANING AIR FILTER DESIGN AND DEVELOPMENT PROGRAM WAS DEVOTED TO ESTABLISHING THE BEST COMMERCIALLY AVAILABLE FILTER MEDIUM UNDER THE SPECIFIED DUST CONDITIONS. THE SECOND PHASE OF THE PROGRAM WAS THE ACTUAL DESIGN AND FABRICATION OF THE SELF-CLEANING AIR FILTER SYSTEM. AND THE RESULT IS REPORTED HEREIN, (AUTHOR)

DDC REPORT BIBL, OGRAPHY SEARCH CONTROL NO, O21492
```

AD-457 934
AUBURN UNIV ALA DEPT OF MECHANICAL ENGINEERING
THERMAL DIFFUSIVITY OF SOLID PROPELLANTS-DEVELOPMENT
OF APPARATUS AND INITIAL TEST RESULTS.
(U)
DESCRIPTIVE NOTE: PROGRESS REPT, NO. 8, NOV 63-FEB 64,
MAR 64 30p TANGER,G.E ; ;
CONTRACT: DAO1 OOQORD1O23
UNCLASSIFIED REPORT

```

RESULTS OF RECENT TESTS ON THE THERMAL CONDUCTIVITY
OF PERSHING PROPELLANT ARE INCLUDED IN THE REPORT.
THESE TESTS WERE PERFORMED AT THE PROPULSION
LABORATORY OF THF ARMY MISSILE COMMAND,
HUNTSVILLE, ALABAMA, A TRANSIENT HEAT TRANSFER
SYSTEM HAS BEEN CONSTRUCTED AND TESTED IN AN ATTEMPT
TO DETERMINE THE THERMAL DIFFUSIVITY OF SOLID
PROPELLANT, DETA,LS ON THE CONSTRUCTION AND
CALIBRATION OF THE APPARATUS ARE GIVEN IN THE REPORT.
ALSO, THERMAL CONDUCTIVITY HAS BEEN DETERMINED FOR
AN INERT PROPELLANT SAMPLE BY THE LINE-SOURCE AND
STEADYSTATE METHODS USED PREVIOUSLY. THE DENSITY
OF THE SPECIMEN WAS MEASURED AND THE SPECIFIC HEAT
WAS CALCULATED IN ORDER TO PROVIDE A COMPLETE THERMAL
ANALYSIS. DERIVATION OF A SERIES SOLUTION FOR THE
PROBLEM OF TRANS, ENT HEAT FLOW IN A SEMI-INFINITE
SOLID IS GIVEN IN AN APPENDIX. THE EQUATIONS ARE
PROGRAMMED SO AS TO OBTAIN A TRIAL-AND-ERROR SOLUTION
FOR THE THERMAL DIFFUSIVITY. (AUTHOR)

DDC REPORT BIBL, OGRAPHY SEARCH CONTROL NO. 021492
\(A D-457891\)
AUBURN UNIV ALA DEPT OF MECHANICAL ENGINEERING
FORCED CONVECTION HEAT TRANSFER AND PROPELLANT
THERMAL PROPERTIES FOR THE PERSHING MISSILE
SYSTEM.
DESCRIPTIVE NOTE: PROGRESS REPT, NO. 7, AUG-OCT 63,
DEC 63 TANGER,G. E. INIX,G. H.
: CARPENTER,A. D. :
CONTRACT: DAO1 OOQORD1023
UNCLASSIFIFD REPORT
NOFORN
SUPPLEMENTARY NOTE,

DESCRIPTORS: (*PROPELLANT GRAINS, THERMAL PROPERTIES), HEAT TRANSFER, THERMAL DIFFUSION, TEST METHODS, TEST EQUIPMENT, MEASURFMENT, THERMAL CONDUCTIVITY, SILICONE PLASTICS, SYNTHET, \(C\) RUBBER
IDENTIFIERS: PERSHING


DDG REPORT BIBL, OGRAPHY SEARCH CONTROL NO, 021492
```

AD-457 883
AUBURN UNIV ALA DEPT OF MECHANICAL ENGINEERING
THE EFFECTS OF WFATHER CONDITIONS ON THE PERSHING
MOTOR.
(U)
DESCRIPTIVE NOTE: PROGRESS REPT, NO. 2, MAY-JUL 62,
AUG 62 16P TANGER,G, E, ;WEIR,R, C. ;
CARPENTER,A , D. :
CONTRACT: DAO1 OOQORD1O23
UNCLASSIFIFD REPORT
NOFORN
SUPPLEMENTARY NOTE;
DESGRIPTORS: (*ROCKET MOTORS (SOLID PROPELLANT), COLD
WEATHER TESTS), (BLANKETS, HEATING ELEMENTS),
PROGRAMMING (COMPUTERS), GUIDED MISSILES (SURFACE-TO-
SURFA(E), POWER SUPPLIES, HEAT TRANSFER, HEAT TRANSFER
COEFFICIENTS, WIND, METEOROLOGICAL PARAMETERS, TABLES,
ATMOSPHERIC TEMPERATURE, HUMIDITY, CLOUD COVER, DEW
POINT, ATMOSPHERIC PRECIPITATION, SURFACE TEMPERATURES,
LOW-TEMPERATURE RFSEARCH, GRAPHICS
(U)
IDENTIFIERS: PERSHING (U)
THE COMPUTER PROGRAM HAS BEEN MODIFIED TO INCLUDE
THE BLANKET THAT IS USED TO MAINTAIN ENVIRONMENT
CONDITIONS OF THF MOTOR. THE PROGRAM TAKES INTO
ACCOUNT THAT THE BLANKET IS A HEAT SOURCE, A POWER
FAILURE CAN BE S,MULATED IN THE PROGRAM, ALSO, THE
OUTSIDE FILM COEFFICIENT HAS BEEN MADE A FUNCTION OF
WIND VELOCITY. DATA HAVE BEEN OBTAINED FROM IB
DIFFERENT WEATHER STATIONS IN THE CONTINENTAL
UNITED STATES AND ALASKA. THESE DATA WERE
SELECTED BY THE WEATHER CONSULTANTS AT THE CLIMATIC
CENTER AS BEING REPRESENTATIVE OF LOW TEMPERATURES
AND HIGH WIND VELOCITIES, ALONG WITH SOME RAPID
VARIATION OF TEMPERATURE, THIS REPORT PRESENTS
SOME PRELIMINARY RESULTS OBTAINED FROM THE MODIFIED
COMPUTER PROGRAM AND PART OF THE DATA OBTAINED FROM
THE AIR CLIMATIC CENTER. THE REPORT ALSO
INNCLUDES A TABULATION OF THE WEATHER DATA BY
LOCATION, PERIOD COVERED AND REASON FOR SELECTION BY
THE AIR CLIMATIC CENTER. (AUTHOR)

```
    DOG REPORT BIBLIOGRAPHY SEARCH CONTROL NO, 021492
AD=445 888
    THIOKOL CHEMICAL CORP HUNTSVILLE ALA
    NOZZLE AND CASE EVALUATION.(U)
DESCRIPTIVE NOTE: QUARTERLY INTERIM TECHNICAL REPT,, 22
    MARZI JUNE 64.
        AUG 64 11p
REPT, NO, 30 64
CONTRACT: DAO1 O2,ORD11919
            UNCLASSIFIED REPORT
        NOFORN
SUPPLEMENTARY NOTE ,
DESCRIPTORS: (*ROCKET CASES, HYDROSTATIC PRESSURE),
    (* NOZZLE INSERTS, PREPARATION), STEEL, FILAMENT WOUND
    CONSTRUCTION, TAPE, TITANIUM COMPOUNDS, BORON COMPOUNDS,
    NITRIDES, COLD WORKING, MARAGING STEEL, ROCKET MOTORS
    (SOLID PROPELLANT,, SECOND-STAGE MOTORS (U)
IDENTIFIERS: SPIRAL-WRAP CONSTRUCTION, PERSHING (U)
THE OBJECTIVE OF THIS PROGRAM IS TO EVALUATE
EXPERIMENTAL ROCKET MOTOR CASES AND NOZZLES. THIS
REPORT DESCRIBES THE HYDROTESTING OF A 2O-INCH
DIAMETER, SPIRAL_WRAPPED, MAR-AGED STRIP STEEL MOTOR
CASE, THE REPORT ALSO DESCRIBES THE PREPARATIONS
BEING CONDUCTED FOR HYDROTESTING TWO 12-INCH
DIAMETER, CRYOGENICALLY FORMED MOTOR CASES AND A
SECOND-STAGE PERGHING MOTOR CASE MANUFACTURED BY
THE HOT-CUP, COLDDRAW PROCESS. ALSO REPORTED ARE
THE PREPARATIONS FOR STATIC TESTING A 2-INCH DIAMETER
TITANIUM BORONITRIDE NOZZLE THROAT INSERT,
(AUTHOR)

\section*{UNCLASSIFIED}

DDC REPORT BIBLTOGRAPHY SEARCH CONTROL NO. O21492
```

AD=440 343
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA PHYSICAL
SCIENCES LAB
THE IMPORTANCE OF AERODYNAMIC ANGLE OF ATTACK METERS
IN MISSILE SYSTEMS,
AUG 2OP LACKNER,HELMUT G. :
REPT. NO, RR-TM-63-1
PROJ: DA-3-A-9927015
UNCLASSIFIFD REPORT
NOFORN
SUPPLEMENTARY NOTE :
DESCRIPTORS: (*ANGLE OF ATTACK, TEST EQUIPMENT), GUIDED
MISSILE TRAJECTOR,ES, DRAG, WIND, VELOCITY, STABILIZED
PLATFORMS, ATTITUDE CONTROL SYSTEMS, EQUATIONS, LIFT,
MEASUREMENT, INSTPUMENTATION, HIGH ALTITUDE,
TRANSDUCERS, PRESGURE*, ATMOSPHERE, AERODYNAMIC
CHARACTERISTICS, FLIGHT, GUIDED MISSILES ISURFACE-
TOSURFA(E), MOBILE, ARMY

THIS REPORT DESCRIBES THE IMPORTANCE OF ANGLE OF ATTACK MEASUREMENTS IN THE DETERMINATION OF THE EFFECTS OF CERTAIN ATMOSPHERIC PHENOMENA ON MISSILES. IT INCLUDES A BR, EF ANALYSIS OF COMMON INSTRUMENTS AND AN OUTLINE OF A SYSTEM UNDER DEVELOPMENT TO COVER THE CRITICAL LOW DYNAMIC PRESSURE RANGES OF A TRAJECTORY, THE GYSTEM WILL UTILIZE A SENSITIVE, HIGH ALTITUDE ANGLE OF ATTACK TRANSDUCER, NOW UNDER DEVELOPMENT, WHICH IS EXPECTED TO RESPOND TO A DYNAMIC PRESSURE DOWN TO ABOUT $10 \mathrm{KP/SQ}$ M. (AUTHOR)

DDC REPORT BIBL, OGRAPHY SEARCH CONTROL NO, OZ 1492

```
AD-439 441
    LOCKHEED MISSILES AND SPACE CO SUNNYVALE CALIF
    SYSTEMS ENGINEERING: AN ANNOTATED BIBLIOGRAPHY,
        APR 63 44P EVANS,GEORGE R, ;
REPT, NO, SB840 6, 3.,SB63 12
            UNCLASSIFIED REPORT
        NOFORN
SUPPLEMENTARY NOTE;
DESCRIPTORS: (*SYETEMS ENGINEERING, BIBLIOGRAPHIES),
    (*BIBLIOGRAPHIES, SYSTEMS ENGINEERING), HANDBOOKS,
    LAUNCH VEHICLES ( AEROSPACE), MANNED SPACECRAFT, GUIDED
    MISSILES (SURFACETO-SURFACE), TACTICAL WEAPONS, DIGITAL
    COMPUTERS, SATELLITES (ARTIFICIAL), SCIENTIFIC
    SATELLITES, SPACE PROBES, INERTIAL GUIDANCE, PAYLOAD,
    MANNED, LUNAR SURFACE VEHICLES, PRINTED CIRCUITS,
    RESEARCH PROGRAM ADMINISTRATION, METEOROLOGICAL
    SATELLITES, SPACE FLIGHT, WEAPON SYSTEMS, STABILITY,
    CONTROL, MILITARY SATELLITES, HEAT HOMING, ANTIMISSILE
    DEFENSE SYSTEMS, , IOUID ROCKET PROPELLANTS, HYDROGEN,
    LIQUEFIED GASES, REENTRY VEHICLES, PACKAGING (U)
IDENTIFIERS: SHILIELAGH, ATLAS, EXPLORER, MINUTEMAN,
    REDSTONE, PERSHING. MAULER, BAMBI, TITAN, SERGEANT,
    SATURN, NIMBUS
THE SCOPE OF THE SEARCH IS LIMITED TO METHODOLOGY OF SYSTEMS ENGINFERING AND FURTHER LIMITED TO THE HANDLING OF THE TECHNICAL PROBLEMS RATHER THAN OTHER PROBLEMS SUCH AS ECONOMIC. MARKETING, ETC, (AUTHOR)

DDC REPORT BIBLTOGRAPHY SEARCH CONTROL NO. O21492
```

AD=434499
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
RELIABILITY EVALUATION LAB
ENVIRONMENTAL TEGTS ON PERSHING GUIDED MISSILE
TRAINER XM-19.
DESCRIPTIVE NOTE: FINAL REPT.
187p SMITH,BRIMAGE L. GGASSAWAY.
JOHN F.;
REPT. NO. RT-TR-6 4-1
PROJ: DA-516-05-011
UNCLASSIFIED REPORT
NOFORN
SUPPLEMENTARY NOTE, ORIGINAL CONTAINS COLOR PLATES: ALL
DDC REPRODUCTIONS WILL BE IN BLACK AND WHITE. ORIGINAL
MAY BE SEEN IN DDC HQ.

```
DESCRIPTORS: (*GU IDED MISSILES (SURFACE-TOSURFACE),
    TRAINING DEVICES): (TRAINING DEVICES, GUIDED MISSILES
    (SURFACE-TO-SURFACE)) (*ENVIRONMENTAL TESTS, TRAINING
    DEVICES), CORROSION, SALT SPRAY TESTS, FUNGUS
    DETERIORATION, ARMY, MOBILE, MILITARY TRAINING
IDENTIFIERS: 1964 . PERSHING, GUIDED MISSILE
    TRAINER
```

PERSHING GUIDED MISSILE TRAINER S/N OO2 WAS
SUBJECTED TO AN ACCELERATED SALT SPRAY TEST AND
A PROLONGED FUNGUS TEST TO DETERMINE THE EFFECTS
OF THESE ENVIRONMENTS ON THE OPERATION OF PERSHING
TRAINERS, IT WAS FOUND THAT THESE ENVIRONMENTS
CAUSED CONSIDERARLE CORROSION OF TRAINER COMPONENTS
AND REFURBISHMENT AFTER EACH TEST WAS NECESSARY
BEFORE A SUCCESSFUL COUNTDOWN COULD BE COMPLETED.
(AUTHOR)

```
    DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO, O21492
AD-429 334
    ARMY ENGINEER REGEARCH AND DEVELOPMENT LABS FORT BELVOIR
    VA
    EVALUATION OF 15n,OOO-BTU/HR, DUCT-TYPE, PORTABLE,
    GASOLINE-ENGINE-DRIVEN AND 2O8/416-VOLT, 4OO-CYCLE,
    ELECTRIC-MOTOR-DRIVEN HEATERS.(U)
DESCRIPTIVE NOTE: TECHNICAL REPT FOR JUL 59-FEB 63.
        NOV 63 79p LITTLE,ROBERT L. ;
REPT. NO. AERDL-1>58
PROJ: DA=10643303D545*.DA-8F71-11-001
TASK: 10643303054502, 8F71-11-001-02
    UNGLASSIFIED REPORT
DESCRIPTORS: (*HEATERS, GASOLINE), (*WINTERIZATION KITS,
    HEATERS), (*HOUSING, HEATERS), ELECTRIC MOTORS, INTERNAL
    COMBUSTION ENGINES, DRIVES, VENTILATION FANS,
    PERFORMANCE (ENGINEERING), FUEL SYSTEMS, HUMIDITY, SALT
    SPRAY TESTS, LIFE EXPECTANCY, VIBRATION, SHOCK
    (MECHANICS), GUIDED MISSILES, LAUNCHING SITES, PRESSURE,
    ENVIRONMENTAL TESTS
        (U)
IDENTIFIERS: 1963, LITTLE JOHN, HAWK, PERSHING (U)
THIS REPORT COVERS DEVELOPMENT AND TESTS OF THE
150,000-BTU/HR, GASOLINE-ENGINE-DRIVEN AND ELEC
TRIC-MOTOR-DRIVEN HEATERS. THE 150,000-BTU/HR
HEATERS ARE COMPATIBLE WITH WINTERIZATION KITS FOR
THE LITTLE JOHN, HAWK, AND PERSHING MISSILE
SYSTEMS AND ARE GUITABLE FOR QUANTITY PROCUREMENTS,
SERVICE LIFE TESTS OF THE PRODUCTION HEATERS HAVE
NOT BEEN COMPLETED, (AUTHOR)

DDC REPORT BIBL, OGRAPHY SEARCH CONTROL NO. 021492
```

AD-426 949
RELIABILITY EVALUATION LAB
JOHN F.:
REPT, NO, RT-TR-63-12
PROJ: DA-516-05-011
UNCLASSIFIFD REPORT
NOFORN

```
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
    PERSHING GUIDED MISSILE TRAINER XM-19 MARRIAGE,
    ENGINEERING EVALUATION AND WEAPON SYSTEM TESTS,
DESCRIPTIVE NOTE: FINAL REPT, , 17 DEC 62-6 MAY 63,
        DEC 63 STP SMITH,BRIMAGE L, IGASSAWAY,
DESCRIPTORS: 1*TRAINING DEVICES, GUIDED MISSILES
    (SURFACE-TO-SURFACE), (GUIDED MISSILES
    (SURFACE-TO-SURFACE), TRAINING DE VICES),
    MOBILE, TACTICAL WEAPONS, COMPATIBILITY,
    HANDLING, CHECKOUT PROCEDURES, LAUNCHING,
    GUIDED MISSILE WARHEADS, INSTALLATION, NAVI
    GATION COMPUTERS, INVERTERS, STABILIZED PLAT
    FORMS, ACCELEROMETERS, TRANSPORTER-ERECTORS, (U)
IDENTIFIERS: 1963 . PERSHING. (U)


DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO. 021492
```

AD-424 709
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
RELIABILITY EVAL|ATION LAB
ENVIRONMENTAL TEGTS ON PERSHING GUIDED MISSILE
TRAINER XM=19.
DESCRIPTIVE NOTE: FINAL REPT,. I AUG-11 DEC 62,
NOV 63 3O7P GASSAVAY,JOHN F, ;SMITH,
BRIMAGE L, ;
REPT, NO, RT-TR-63-11
PROJ: DA-516-05-0,1
UNCLASSIFIFD REPORT
NOFORN
SUPPLEMENTARY NOTE:
DESCRIPTORS: (*TACTICAL WEAPONS, ENVIRONMENTAL TESTS),
(*GUIDED MISSILES (SURFACE-TO-SURFACE), ENVIRONMENTAL
TESTS), (*TRAINING DEVICES, ENVIRONMENTAL TESTS),
TRAINING, TESTS, TEMPERATURE, ALTITUDE CHAMBERS,
HANDLING, THERMAL STRESSES, SAND, HUMIDITY,
TRANSPORTATION, ICE, TEST EQUIPMENT, TEST FACILITIES (U)
IDENTIFIERS: 1963. PERSHING
(U)
THIS REPORT COVERS THE ENVIRONMENTAL TESTS
PERFORMED ON THE PERSHING GUIDED MISSILE
TRAINER (GMT-P-O\cap2) TO VERIFY THAT THE
MISSILE TRAINER IS CAPABLE OF SATISFACTORY OPERATION
IN WORLDWIDE ENVIRONMENT. THE ENVIRONMENTAL TESTS
CONSISTED OF MISSILE TRAINER INSPECTION, MATING,
HANDLING, AND FUNCTIONAL TESTS; HIGH TEMPERATURE
TESTS: LOW TEMPERATURE TESTS; THERMAL SHOCK AND ICING
TESTS; HUMIDITY AND RAIN TESTS; SAND AND DUST TESTS;
ALTITUDE TESTS: \triangleND TRUCK TRANSPORTATION TESTS,
THE PERSHING TRA,NER OPERATED SATISFACTORILY
UNDER ALL SIMULATED ENVIRONMENTS EXCEPT THE HIGH
TEMPERATURE TREATMENTS. (AUTHOR)

DDC REPORT BIBLTOGRAPHY SEARCH CONTROL NO. O21492

```
AD-422 783
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
    RELIABILITY EVAL|ATION LAB
    TRANSPORTATION-VIBRATION TEST OF PERSHING MISSILE
    SYSTEM TACTICAL GHIPPING AND STORAGE CONTAINERS,
    PHASE IV.
DESCRIPTIVE NOTE: FINAL REPT.,
            OCT 63 21p EYESTONE,R.G. ;
REPT, NO, RT-TR-63-10
PROJ: 516 05 011
```

 UNCLASSIFIFD REPORT
 SUPPLEMENTARY NOTE :
DESCRIPTORS: (GUTDED MISSILES (SURFACE-TOSURFACE).
TRANSPORTATIONI, TACTICAL WEAPONS, TESTS, TEST METHODS,
VIBRATION, STORAGE, CONTAINERS, INSTRUMENTATION, ROADS,
EFFECTIVENESS, TRAILERS, DAMAGE (U)
IDENTIFIERS: 1963 PERSHING (U)
THIS TEST SUBJECTED A MODIFIED TACTICAL FIRST STAGE
CONTAINER FOR THE PERSHING MISSILE SYSTEM, AND
ITS DUMMY LOAD, TO A ROUGH ROAD TEST DESIGNED TO
DUPLICATE THE VIARATION SPECTRUM SPECIFIED DURING
TRUCK TRANSPORTATION, THIS TEST WAS CONDUCTED BY
THE TEST AND EVALUATION LABORATORY AT
REDSTONE ARSENAL, ALABAMA AT TEST AREA 3 IN
AUGUST 1963. (AUTHOR)

```
    DDG REPORT BIBL,OGRAPHY SEARCH CONTROL NO. O21492
AD-422 521
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA PHYSICAL
    SCIENCES LAB
    ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSILE-511,
    BAGLEY,HUBERT D, ;BILLIONS,
    NOVELLA 5, ;
REPT, NO, RR-TR-63-23
PROJ: 1B2 791910678
    UNCLASSIFIED REPORT
SUPPLEMENTARY NOTE:
```

```
DESCRIPTORS: (*METEOROLOGICAL PARAMETERS, LAUNCHING),
```

DESCRIPTORS: (*METEOROLOGICAL PARAMETERS, LAUNCHING),
(*LAUNCHING, GUIDED MISSILES (SURFACE-TO-SURFACE)),
(*LAUNCHING, GUIDED MISSILES (SURFACE-TO-SURFACE)),
RADIOSONDES, TACT,CAL WEAPONS, FLIGHT TESTING, HIGH
RADIOSONDES, TACT,CAL WEAPONS, FLIGHT TESTING, HIGH
ALTITUDE, WIND, METEOROLOGICAL CHARTS, UPPER ATMOSPHERE,
ALTITUDE, WIND, METEOROLOGICAL CHARTS, UPPER ATMOSPHERE,
WEATHER COMMUNICATIONG, METEOROLOGICAL BALLOONS,
WEATHER COMMUNICATIONG, METEOROLOGICAL BALLOONS,
ATMOSPHERIC TEMPERATURE, HUMIDITY, THERMODYNAMICS,
ATMOSPHERIC TEMPERATURE, HUMIDITY, THERMODYNAMICS,
EQUATIONS, DATA, SOUNDING ROCKETS
EQUATIONS, DATA, SOUNDING ROCKETS
(U)
(U)
IDENTIFIERS: 1963. PERSHING, ARCAS (U)
IDENTIFIERS: 1963. PERSHING, ARCAS (U)
THIS REPORT PRESENTS THE ATMOSPHERIC ENVIRONMENT
FOR THE FLIGHT OF PERSHING MISSILE-5!11, WHICH WAS
LAUNCHED ON 5 APRIL 1963 AT 1945 EST, FROM THE
ATLANTIC MISSILE RANGE, CAPE CANAVERAL,
FLORIDA, THE GENFRAL SYNOPTIC SITUATION FOR THE
FLIGHT AREA, SURFACE OBSERVATIONS AT LAUNCH TIME, AND
UPPER AIR CONDITIONS AS MEASURED BY RAWINSONDES
RELEASED AS CLOSE TO MISSILE LAUNCH TIME AS POSSIBLE
ARE GIVEN. THIGH ALTITUDE WIND DATA OVER THE
LAUNCH AREA AS DFTERMINED FROM A METEOROLOGICAL
ROCKET FLIGHT ARE ALSO PRESENTED. RELATIVE
DEVIATIONS OF THERMODYNAMIC QUANTITIES FROM THE
PATRICK AIR FORCE BASE ANNUAL REFERENCE
ATMOSPHERE ARE PRESENTED IN GRAPHICAL FORM FOR EASY
REFERENCE, (AUTHOR)

UNCLASSIFIED

DDC REPORT BIBL OGRAPHY SEARCH CONTROL NO. O21492

```
AD=420 381
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA PHYSICAL
    SCIENCES LAB
    ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSILE-4O8,
        29p BAGLEY,HUBERT D. ;BILLIONS,
    NOVELLA S.;
REPT. NO. RR-TR-63-21
PROJ: DA-1-B-279191-D-678
    UNCLASSIFIFD REPORT
SUPPLEMENTARY NOTE: UNCLASSIFIED REPORT
DESCRIPTORS: (*GUIDED MISSILE RANGES, METEOROLOGICAL
    PARAMETERS), FLIGHT TESTING, ATMOSPHERE, GUIDED MISSILES
    (SURFACE-TO-SURFACE), TACTICAL WEAPONS, WIND,
    ATMOSPHERIC SOUND,NG
IDENTIFIERS: 1963*PERSHING (U)
```

THE ATMOSPHERIC ENVIRONMENT IS PRESENTED FOR THE FLIGHT OF PERSHING MISSILE-40B, WHICH WAS LAUNCHED ON 3 APRIL 1963 , FROM THE ATLANTIC MISSILE RANGE. THE GENERAL SYNOPTIC SITUATION FOR THE FLIGHT AREA, SURFACE OBSERVATIONS AT LAUNCH TIME, AND UPPER AIR CONDITIONS AS MEASURED BY RAWINSONDES RELEASED AS CLOSE TO MISSILE LAUNCH TIME AS POSSIBLE ARE GIVEN, HIGH ALTITUDE WIND DATA OVER THE LAUNCH AREA AS DETERMINED FROM A METEOROLOGICAL ROCKET FLIGHT ARE ALSO PRESENTED. RELATIVE DEVIATIONS OF THERMODYNAMIC QUANTITIES FROM THE PATRICK AIR FORCE BASE ANNUAL REFERENCE ATMOSPHERE ARE PRESENTED IN GRAPHICAL FORM FOR EASY REFERENCE. (AUTHOR)

UNCLASSIFIED

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
AD-415 279
    THIOKOL CHEMICAL CORP HUNTSVILLE ALA
    (NO TITLE).(U)
DESCRIPTIVE NOTE: MONTHLY PERSHING STATUS LETTER, 21
    JUNE 2O JULY 63.
        AUG 63 4p
REPT,NO, U63 396
            UNCLASSIFIFD REPORT
        NOFORN
DESCRIPTORS: (*ROCKET MOTORS ISOLID PROPEL
    LANT), GUIDED MISEILES (SURFACE TO SURFACE)),
    CAPTIVE TESTS, VIBRATION, TEMPERATURE, AGING
    (MATERIALS), STORAGE, MOISTURE, TENSILE PROPER
    TIES, TACTICAL WEAPONS.
    (U)
IDENTIFIERS: 1963* PERSHING. (U)
    MONTHLY STATUS LETTER ON PERSHING MOTORS.
```


UNCLASSIFIED

DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO. 021492

```
AD-412 587L
    ARMY ELECTRONIC PROVING GROUND FORT HUACHUCA ARIZ
DESCRIPTIVE NOTE: FINAL REPT,.
    JUL 63 47P JANTZ,MARVINA,;
PROJ: 6 3 3310 03
MONITOR: AEPG PUB. NO, ETAlO5,
    UNCLASSIFI=D REPORT
    NOTICE: LL REQUEGTS RUIRE APRVAL OF ARMY MATERIAL
    COMMAND, WSHINGT\capN 25, D. C,
DESCRIPTORS: (*RADIO COMMUNICATION SYSTEMS,
    COMMAND AND CONTROL SYSTEMS), (*COMMAND AND
    CONTROL SYSTEMS, RADIO COMMUNICATION SYSTEMSI,
    GROUND SUPPORT EQUIPMENT, GUIDED MISSILES
    (SURFACE-TO-SURFACE), RANGES (DISTANCE),
    PERFORMANCE (ENGINEERING), ANTENNAS, SCATTER
    ING, DIVERSITY RECEPTION. TERRAIN, ADIO TELETYPE
    SYSTEMS, TROPOSPHFRE, TRACKED VEHICLES, MOBILE,
    PROPAGATION, SITE SELECTION, ATTENUATION,
    VOICE COMMUNICATION SYSTEMS.

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
```

AD-410 876
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA PHYSICAL
SCIENCES LAB
ATMOSPHERIC ENVIQONMENT FOR PERSHING MISSILE 363,

```
        MAR 63 29p BAGLEY,HUBERT D.:BILLIONS.
    NOVELLA S,
REPT. NO. RR-TR-63-12
PROJ: \(1 \mathrm{B2} 791910698\)
    UNCLASSIFIED RERORT
NOFORN
DESCRIPTORS: (*METEOROLOGY, GUIDED MISSILE
    RANGES), SURFACE TEMPERATURES, UPPER ATMOS PHERE,
    TROPOSPHERE, RADI SONDES, WIND, HIGH ALTITUDE,
    DATA, METEOROLOGICAL PARAMETERS.
IDENTIFIERS: 1963 , PERSHING, FLORIDA, CAPE
    CANAVERAL.

THE ATMOSPHERIC ENVIRONMENT FOR THE FLIGHT OF PERSHING MISSILE_363. WHICH WAS LAUNCD ON 30 JANUARY 1963 AT 1930 EST, FROM THE ATLANTIC MISSILE RANGE, CAPE CANAVERAL, FLORIDA IS PRE SENTED, THE GENERAL SYNOPTIC SITUATION FOR THE FLIGHT AREA, SURFACE OBSERVATIONS AT LAUNCH TIME, AND UPPER AIR CONDITIONS AS MEASURED BY RAWINSONDES RELEASED AS CLOSE TO MISSILE LAUNCH TIME AS POSSIBLE ARE GIVEN. HIGH ALTITUDE WIND DATA OVER THE LAUNCH AREA AS DETERMINFD FROM A METEOROLOGICAL ROCKET FLIGHT ARE ALSO DRESENTED. RELATIVE DEVIATIONS OF THERMODYNAMIC QUANTITIES FROM THE PATRICK AIR FORCE BASE ANNUAI REFERENCE ATMOSPHERE ARE PRESENTED IN GRAPHICAL FORM FOR EASY REFERENCE. (AUTHOR)

DDC REPORT BIBL, OGRAPHY SEARCH CONTROL NO. O21492
```

AD=409 880
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA PHYSICAL
SCIENCES LAB
ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSILE 4O3,

```
```

APR 23P BAGLEY,HUBERT D,IBILLIONS,

```
    NOVELLA 5 .:
REPT. NO, RR-TR-63-13
PROJ: \(1 B 27919106,8\)
    UNCLASSIFIED REPORT
DESCRIPTORS: (*ATMOSPHERE MODELS, GUIDED MISSILE
RANGES), ( *MICROMETEOROLOGY, DATA),
METEOROLOGY, SURFACE TEMPERATURES, WIND, UPPER
ATMOSPHERE, ATMOS IHERIC TEMPERATURE, RADIO SONDES,
METEOROLOGICAL RADAR, METEOROLOGICAL CHARTS,
IDENTIFIERS: 1963 FLORIDA, PERSHING.
THE ATMOSPHERIC FNVIRONMENT IS PRESENTED FOR THE
FLIGHT OF PERSHING MISSILE-403, WHICH WAS LAUNCHED
ON 14 FEBRUARY 1963, FROM THE ATLANTIC MISSILE
RANGE, CAPE CANAYERAL, FLORIDA, THE
GENERAL SYNOPTIC SITUATION FOR THE FLIGHT AREA,
SURFACE OBSERVAT, ONS AT LAUNCH TIME, AND UPPER AIR
CON DITIONS AS MEASURED BY RAWINSONDES RELEASED AS
CLOSE TO MISSILE LAUNCH TIME AS POSSIBLE ARE GIVEN.
HIGH ALTITUDE WIND DATA OVER THE LAUNCH AREA AS
DETERMINED FROM A METEOROLOGICAL ROCKET FLIGHT ARE
ALSO PRESENTED. (AUTHOR)

DDC REPORT BIBLTOGRAPHY SEARCH CONTROL NO. 021492
```

AD=409 484
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA
ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSILE 358,

```
        MAR 63 BILLIONS, NOVELLA S, BAGLEY.
    HUBERT D.:
PROJ: \(1 \mathrm{B2} 791910678\)
MONITOR: AMC RR TRG3 9
    UNCLASSIFIFD REPORT
        NOFORN
DESCRIPTORS: (*GU, DED MISSILE RANG METEOROLOGICAL
PARAMETERS), (*METEOROLOGICAL PARAMETERS, GUIDED
MISSILE RANGES), GUIDED MISSILES (SURFACE TO
SURFACE), METEOROLOGICAL CHARTS, TACTICAL WEAPONS.
                    (U)
IDENTIFIERS: \(1963^{\circ}\) PERSHING.

THIS REPORT PRESENTS THE ATMOSPHERIC ENVIRONMENT FOR THE FLIGHT OF PERSHING MISSILE-358, WHICH WAS LAUNCHED FROM THE ATLANTIC MISSILE RANGE, CAPE CANAVERAL, FLORIDA ON 17 JANUARY 1963 AT 2233 EST. THE GENERAL SYNOPTIC SITUATION FOR THE FLIGHT AREA, SURFACE OBSERVATIONS AT LAUNCH TIME, AND UPPER AIR CONDITIONS AS MEASURED BY RAWINSONDES RELEASED AS CLOSE TO MISSILE LAUNCH TIME AS POSSIBLE ARE GIVEN, WIND \(A A T A ~ O B T A I N E D ~ F R O M ~ R A D A R ~ T R A C K ~ O F ~\) AN ARCAS METEOROLOGICAL ROCKET FLIGHT PROVIDED BY THE PAFB AIR WEATHER SERVICE IN SUPPORT OF MISSILE 358 ARE ALSO PRESENTED. RELA TIVE DEVIATIONS OF THERMODYNAMIC QUANTITIES FROM THE PAFB REFERENCE ANNUAL ATMOSPHERE ARE PRE SENTED IN GRAPHICAL FORM FOR EASY REFERENCE. (AUTHOR)

DDC REPORT BIBL OGRAPHY SEARCH CONTROL NO. O21492
```

AD=407 092L
ABERDEEN PROVING GROUND MD
ACCEPTANCE TEST ,PRODUCTION, OF HEATER, DUCT TYPE,
PORTABLE, 150,OOO BTU/HR, GASOLINE ENGINE DRIVEN,

```
        JUN 63 HANCOCK,R,R,:
PROJ: 70327601
MONITOR: APG DPS994
    UNCLASSIFIED REPORT
    NOTICE: ONLY MILTTARY OFFICES MAY REQUEST FROM DDC.
    OTHERS REQUEST APPROVAL OF ABERDEEN PROVING GROUND,
    MD. ATTN: STEAP-DS.
DESCRIPTORS: *HEATERS* ENVIRONMENTAL TESTS,
    DUCTS, SAND, GUIDED MISSILES ISURFACE TO
    SURFACEI, GROUND GUPPORT EQUIPMENT, INTERNAL
    COMBUSTION ENGINES.
IDENTIFIERS: \(1963^{*}\) PERSHING.
```

THE HEATER, DUCT TYPE, PORTABLE, 150,000
BTU/HR, GASOLINE ENGINE DRIVEN, WAS SUBJECTED
TO SAND AND DUST TEST AS PART OF AN ACCEPTANCE TEST.
TESTS DISCLOSED THAT THE UNIT MET THE REQUIREMENTS
OF PROCEDURE I, GECTION 4.10 OF MILITARY
SPECIFICA TION MIL-E-4970A (USAF),
'ENVIRONMENTAL TESTING, GROUND SUPPORT
EQUIPMENT, GENERAL SPECIFICATION FOR,' DATED 3
MARCH 1959. THE HEATER IS FOR USE WITH THE
PERSHING MISSILE SYSTEM. (AUTHOR)

```
                                    UNCLASSIFIED
    DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO, O21492
AD-299 468
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA PHYSICAL
    SCIENCES LAB
    ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSILE-3S4 (U)
        JAN 63 IV BAGLEY,H.D, BILLIONS,NOVELLA S.;
REPT, NO, RR TR 6% 3
            UNCLASSIFIED REPORT
DESCRIPTORS: GUIDED MISSILES(SURFACE-TO-SURFACE),
    * STRATOSPHERE, ATMOSPHERE, LAUNCHING, METEOROLOGY
    (U)
IDENTIFIERS: PERSHING
(U)
ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSILE 354.
```


UNCLASSIFIED

```
    DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO, 021492
AD-298 839
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA PHYSICAL
    SCIENCES LAB
    ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSILE-35I (U)
        JAN 63 IV BILLIONS,NOVELLA S.;
REPT, NO, RR TR 63 2
    UNCLASSIFIED REPORT
DESCRIPTORS: *GUINED MISSILES(SURFACE-TO-SURFACE),
    *METEOROLOGY, ATMOSPHERE, HUMIDITY, LAUNCHING,
    MEASUREMENT, METEOROLOGICAL CHARTS, PRESSURE, SOUNDING
    ROCKETS, TEMPERATURE, THERMODYNAMICS (U)
IDENTIFIERS: ARCAS, PERSHING (U)
    ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSILE LAUNCHING,
```


UNCLASSIFIED

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492

```
AD-298 154
    LYON INC DETROIT MICH
    DEVELOPMENT OF DFEP DRAWN - ONE PIECE HIGH
    PERFORMANCE ROCKFT MOTOR CASE
            SEP bZ 1V
REPT. NO. GR 21
CONTRACT: DA2O 01月ORD23004
            UNCLASSIFIED REPORT
                NOFORN
DESCRIPTORS: *ROCKET CASES, COLD WORKING, HARDENING,
    HARDNESS, HEAT TRFATMENT, HYDROSTATIC PRESSURE,
    MANUFACTURING METHODS, MARTENSITE, MECHANICAL
    PROPERTIES, MICROSTRUCTURE, NON-DESTRUCTIVE TESTING,
    TESTS
                            (U)
IDENTIFIERS: PERSHING (U)
    FABRICATION OF ONF PIECE HIGH PERFORMANCE ROCKET
    MOTOR CASE.
```

```
    DDC REPORT BIBLTOGRAPHY SEARCH CONTROL NO, O21492
AD-296 509
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA ARMY INERTIAL
    GUIDANCE AND CONTROL LAB AND CENTER
    A SECOND STUDY ON REDUCTION OR ELIMINATION OF AIR
    CONDITIONING IN THE PERSHING GUIDANCE AND CONTROL
    COMPARTMENT
                                    (U)
        JAN 63 IV VANHOFF,PETER;GAMBILL,RUSSELL T,:
REPT, NO, RG TR 63 4
PROJ: DA-1-B-279191-D-678
            UNCLASSIFIED REPORT
DESCRIPTORS: GUIDED MISSILES(SURFACE-TO-SURFACE),
    ACCELEROMETERS, ATR CONDITIONING EQUIPMENT, COMPUTERS,
    CONTROL SYSTEMS, GEARS, GIMBALS, GYROSCOPES, INERTIAL
    GUIDANCE, SERVO AMPLIFIERS, SERVOMOTORS, TEMPERATURE
    CONTROL
IDENTIFIERS: PERSHING
(U)
REDUCTION OR ELIMTNATION OF AIR CONDITIONING IN THE PERSHING GUIDANCE AND CONTROL COMPARTMENT.
```

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
AD-295 597
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA ARMY INERTIAL
    GUIDANCE AND CONTROL LAB AND CENTER
    APPLICATION OF ENCODERS IN MISSILE AZIMUTH ALIGNMENT
    SYSTEMS
        DEC b2 IV MOONEY,F,J,;
REPT, NO, RG TR 62 8
```

 UNCLASSIFIED REPORT
 DESCRIPTORS: *AZIMUTH: CODING, *TACTICAL WEAPONS,
CONTROL, DETERMINATION, ELECTRONIC EQUIPMENT, ERRORS,
GUIDED MISSILE COMPUTERS, GUIDED MISSILE LAUNCHERS,
GUIDED MISSILES(SURFACE-TO-SURFACE), RELIABILITY,
THEODOLITES(U)
IDENTIFIERS: PERSHING (U)

THE USE OF SHAFT ANGLE ENCODERS IN MISSILE AZIMUTH ALIGNMENT SYSTEME IS DISCUSSED. A BRIEF RESUME OF THE CHARACTERISTICS OF SEVERAL ENCODERS IS PRESENTED WITH A DISCUSSION OF THE USE OF INCREMENTAL ENCODERS AS A STEP TOWARD INCREASED SYSTEM RELIABILITY. (AUTHOR)

```
    DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO, 021492
AD-292 948
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA ARMY INERTIAL
    GUIDANCE AND CONTROL LAB AND CENTER
    A STUDY ON REDUCING OR ELIMINATING AIR CONDITIONING
    OF THE PERSHING GUIDANCE AND CONTROL COMPARTMENT (U)
        NOV 62 IV VANHOFF,PETER A,:GAMBILL,RUSSELL T,;
REPT, NO, RG TM 6, 27
```

 UNCLASSIFIED REPORT
 DESCRIPTORS: *AIR CONDITIONING EQUIPMENT, GGUIDED
MISSILESISURFACE-TO-SURFACEI, INERTIAL GUIDANCE,
*TACTICAL WEAPONS, CLIMATOLOGY, CONTROL SYSTEMS, COSTS,
FEASIBILITY STUDIES, TEMPERATURE, TEST METHODS (U)
IDENTIFIERS: PERSHING
A STUDY IS PRESENTED ON THE POSSIBILITY OF REMOVING
OR REDUCING THE AIR CONDITIONING NOW REQUIRED BY THE
PERSHING GUIDANCF AND CONTROL COMPARTMENT. A
CLIMATICAL STUDY WAS MADE TO ESTABLISH THE
OPERATIONAL ENVIRON ENT, AND A PROPO ED LABORATORY
TEST PROGRAM IS DESCRIBED TO DET RMINE GUI NC AND
CO ROL COMPARTMENT OPERATING TEMPERATURE, SPECIFIC T
STS TO BE PERFORMED ON A MISSILE, AND THE MISSILE
MODIFICATIONS AND TEST EQUIPMENT REQUIRED. ALSO
INCLUDED ARE MANPOWER AND COST ESTIMATES FOR THE
PROPOSED TEST PROGRAM. (AUTHOR)

DDC REPORT BIBL, OGRAPHY SEARCH CONTROL NO. 021492

```
AD-288 55OL
    ABERDEEN PROVING GROUND MD
    ENGINEERING DESIGN TEST OF THE FIRE-CONTROL PACK
    (FCP) ON THE XM4,4EZ CARRIER, THE UNIT TEST ADAPTER
    (UTA). AND THE AGSEMBLY TEST ADAPTER (ATA) ON AN MSS
    TRUCK (PERSHING wEAPON SYSTEM)
            NOV 62 IV FORD,T,:
REPT, NO, DPS 694
```

 UNCLASSIFIFD REPORT
 DOD ONLY
 DESCRIPTORS: *IRE CONTROL COMPUTERS, FIRE CONTROL
SYSTEMS, GUIDED MISSILE COMPUTERS, TACTICAL WEAPONS,
CARGO VEHICLES, GAS TURBINES, GROUND SUPPORT EQUIPMENT,
GUIDED MISSILES (SURFACE-TO-SURFACE), INSTRUMENTATION,
MAINTENANCE EQUIPMENT, PHOTOGRAPHS, POWER SUPPLIES, TEST
METHODS, TESTS, TRACKED VEHICLES, TRANSPORTATION,
VIBRATION
IDENTIFIERS: M-S5 TRUCKS, S-TON, M-474 VEHICLES,
PERSHING

ADAPTER KITS, THF FIRE-CONTROL PACK (FCP), UNIT TEST ADAPTER (UTA), AND THE ASSEMBLY TEST ADAPTER (ATA) WERE EVALUATED BY MEANS OF A RAIL-HUMPING TEST, ROADSHOCK AND VIBRATION TEST, AND A ROADENDURANCE TEST, THE FCP WAS MOUNTED ON THE XM474EZ CARRIER, AND THE UTA AND ATA WERE MOUNTED ON THE M S TRUCK SEPARATELY FOR THE ROADSHOCK AND VIBRAT, ON TESTS AND THE ROAD-ENDURANCE TEST, THE XM474E? CARRIER AND THE MS5 TRUCK WERE PROVED ADEQUATE FOR THE TRANSPORTATION OF THE ABOVE UNITS. THE RELIABILITY OF THE FCP CANNOT BE PROPERLY EVALUATED DUE TO THE LOW ENDURANCE MILEAGE ACCUMULATED. THE NUMBER OF FAILURES OF THE UTA AND ATA INDICATES THAT A FURTHER STUDY OF THE VULNERABLE PARTS SHOULD BE MADE BY CODE A. (AUTHOR)

UNCLASSIFIED

```
    DDC REPORT BIBLTOGRAPHY SEARCH CONTROL NO, 021492
AD-285 944
    ARDE-PORTLAND INC PARAMUS NJ
    CRYOGENIC STRETCH FORMING OF SOLID PROPELLANT ROCKET
    CASES
        SEP 62 IV CLAFFY,GEORGE;
CONTRACT: DA3O O6GORD35O1
            UNCLASSIFIEO REPORT
DESCRIPTORS: *CRYOGENICS, *MANUFACTURING METHODS,
    *ROCKET MOTORS, CONFIGURATION, CYLINDRICAL BODIES,
    DEFORMATION, PRESGURE VESSELS, PRODUCTION, STAINLESS
    STEEL, STRESSES
    (U)
IDENTIFIERS: PERSHING (U)
    CRYOGENIC STRETCH FORMING OF SOLID PROPELLANT ROCKET
    CASES. THE FEASIB,LITY OF THIS METHOD WAS
    DEMONSTRATED, PREGENT OBJECTIVES ARE CONCERNED WITH
    DEVELOPING THE PROCESG TO A POINT WHERE A PREDETERMINED,
    COMPLEX CONFIGURATION CAN BE PRODUCED WHILE MAINTAINING
    THE HIGH STRENGTH ACHIEVED IN PROTOTYPE CASES.
```

```
    DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO, 021492
AD-284 682L
    ABERDEEN PROVING GROUND MD
    AUTOMOTIVE TESTING OF THE POWER STATION EQUIVALENT
    SET FOR THE PERSHING WEAPON SYSTEM
                                    (U)
        SEP 62 IV EDDINGTON,V,A, ;
REPT, NO, DPS 624
                    UNCLASSIFIED REPORT
        DOD ONLY
DESCRIPTORS: *GENERATORS, GROUND SUPPORT EQUIPMENT,
    *GUIDED MISSILES(gURFACE-TO-SURFACE), *POWER SUPPLIES.
    ELECTRIC POWER PRODUCTION, FAILURE (MECHANICS),
    RAILROADS, RELIAB,LITY, ROADS, SHOCK RESISTANCE,
    TACTICAL WEAPONS, TESTS, TRANSPORTATION, VIBRATION (U)
IDENTIFIERS: PERSHING
(U)
    AUTOMOTIVE TESTING OF POWER STATION EQUIVALENT (PSE) SET
    FOR PERSHING WEAPON: EFFECTS OF ROAD SHOCK AND
    VIBRATION RAILROAD HUMPING AND FIELD TRANSPORTATION ON
    FACILITIES DISTRIRUTION TRAILER (FDT) AND 45-KW
    GENERATOR SET AND TRAILER.
```

DDC REPORT BIBLTOGRAPHY SEARCH CONTROL NO, O21492

```
AD-283 264
    ARMY ENGINEER REGEARCH AND DEVELOPMENT LABS FORT BELVOIR
    VA
    ENGINEERING REPORT OF G,OOO-BTU/HR AIR CONDITIONING
    UNIT
DESCRIPTIVE NOTE: TECHNICAL REPT.
            MAR 62 44p MCDONALD,JOHN L,:ADKINS,L.H.:
REPT. NO. AERDL-1>09
PROJ: DA-8F71-11-001
TASK: 8F71-11-001-03
```

UNCLASSIFIED REPORT
DESCRIPTORS: AIR CONDITIONING EQUIPMENT, GROUND
SUPPORT EQUIPMENT: ARTILLERY, COMMUNICATION EQUIPMENT,
FIRE CONTROL SYSTEMS, GUIDED MISSILES, GUIDED
MISSILES(SURFACE-TO-SURFACE), MOBILE, SHELTERS, SURFACE-
TO-SURFACE, TESTS*' TRAILERS (U)
IDENTIFIERS: PERSHING (U)
THE DEVELOPMENT AND TESTING ARE PRESENTED FOR A
MULTIPACK GE SELF-CONTAINE AIR-COOLED 6,OOOBTU/
HR, AIR CONDITIONING UNIT TO BE USED IN ALL MOBILE
TRAILERS AND EXPANSIBLE VANS. THE REPORT
CONCLUDES: (A) THE 6.000-BTU/HR ,
STANDARDWEIGHT, \&O-CYCLE, AIR CONDITIONING UNIT
(TYPE 6O) IN THE PRESENT STAGE OF DEVELOPMENT
MEETS THE REQUIRFMENTS OF THE MILITARY CHARACTERISTI
S AND THE PURCHASE DESCRIPTION EXCEPT FOR LOW
COOLING CAPACITY AND LOW CONDENSER FAN MOTOR
HORESEPOWER: (B) THE 6,00-BTU/HR, S
ANDARDWEIGHT, MU, TIPACKAGE, $400-C Y C L E, ~ A I R$
CONDITIONING UNIT (TYPE 400 SECOND-STAGE DESIGN)
IS SATISFACTORY AND MEETS THE REQUIREMENTS OF THE
MILITARY CHARACTFRISTICS AS OUTLINED IN THE PROJECT
CARD AND THE PURCHASE DESCRIPTION EXCEPT FOR MINOR
DEFICIENCIES; (C) THE TESTED AIR CONDITIONER
DESIGN CAN ONLY BE REPRODUCED BY USING MANUFACTURING
DRAWINGS AS A PURCHASE REQUIREMENT: D) INCE
THE 40O-CYCLE VERSION HAS HAD THE EQUIVALENT OF A
SERVICE TEST, IT IS NOW READY FOR TYPE
CLASSIFICATION: , E, A LOUVER ARRANGEMENT TO
DEFLECT THE CONDENSER DISCHARGE AIR UPWARD AS DONE IN
THE PERSHING HUTS WOULD GUARD AGAINST POSSIBLE
RECIRCULATION AND REDUCTION OF PERFORMANCE.

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492

```
AD-278 677
    LYON INC DETROIT MICH
    DEVELOPMENT OF DFEP DRAWN - ONE PIECE HIGH
    PERFORMANCE ROCKFT MOTOR CASE
            APR 62 IV MARTIN,WAYNE A,;
CONTRACT: DACO O18ORD23004
```

```
            UNCLASSIFIED REPORT
```

 UNCLASSIFIED REPORT
 NOFORN
 DESCRIPTORS: ALLOYS: ALUMINUM ALLOYS, CHROMIUM ALLOYS,
COBALT ALLOYS, DIFS, HARDNESS, HEAT TREATMENT, MACHINE
TOOLS, MECHANICAL PROPERTIES, METAL-FORMING PRESSES,
METALLURGICAL ANA,YSIS. METALS, MICROSTRUGTURE, NICKEL
ALLOYS, STRESSES, VANADIUM ALLOYS

```
        & I &C T IC IC D V LOPM NT OF
DEEP DRAWN - ONE PI C IG FORM CE ROCK O OR
C GERL RPO, U URLYR P
0& 1 - I P BY Y AR I.
1) APR 62, 38P, INCL. ILLUS, BLE, CONTRACT DA
<)-1।*-ORD-23004, UNCLASSIFIED REPORT
DESCRIPTORS: *ROCKET CA S, RAWING
(MACHINE PROCESS;NG). *TITANIUM ALLOYS, DIE
, MAC INE OOLS, METAL FORMING PRESS S,
METALS, ALLOYS, ALUMINUM ALLOYS, CHRO IUM
ALLOY V A ADIU LLOYS N ICKEL ALLOYS, C
OBALT LLOYS EC ICAL PROP R I S STR ES,
    ICRO TRUCTURE, ME AL LURGICAL ANALYSIS, H
RDNES HE T TREA NT, MANUFACTURING METHODS,
IDENTIFIERS: PERGHING. 3OO-M STEEL. SPECIAL
TOOLING AND FABR,CATION OF THE 4O-IN. DIAMETER P
ERSHING <ND-S GE MO OR CASE REACCOMPLISHED,
METALLURGICAL ANALYSIS DATA OF 3OO-C SE I IC
A PR PO S S D T E DE IR GR IS FLOW P T R
U IFOR I ICRO RUC U R UB-C L
DR ING TS O LL-B TI LLOY C SES INCLUDED
METALLURGICAL NALYSIS AND MICROSTRUCTURE,
```

DDC REPORT BIBL, OGRAPHY SEARCH CONTROL NO. 021492

```
AD-274 828
    LYON INC DETROIT MICH
    DEVELOPMENT OF DFEP DRAWN - ONE PIECE HIGH
    PERFORMANCE ROCKFT MOTOR CASE
            FEB 62 IV MARTIN,WAYNE A.I
CONTRACT: DACO O18ORD23004
                UNGLASSIFIFD REPORT
DESCRIPTORS: *ROCKET CASES, ©STEEL, ©TITANIUM ALLOYS,
ALLOYS, COBALT ALIOYS. DIES, DRAWING (MACHINE
PROCESSING) HEAT TREATMENT, MACHINE TOOLS,
MANUFACTURING METHODS. METAL-FORMING PRESSES, METALS,
MOLYBDENUM ALLOYS. NICKEL ALLOYS
IDENTIFIERS: PERSHING (U)
```

PROGRESS IS REPORTED ON THE FABRICATION OF SPECIAL
TOOLING. THE HOT CUP, FIRST DRAW, SECOND DRAW,
THIRD DRAW, AND FOURTH DRAW DIE ASSEMBLIES ARE
COMPLETE. THE FIFTH DRAW, SIXTH DRAW, AND HEADING
DIES ARE NEARING COMPLETION, THREE CASES WERE
PROCESSED THROUGH THREE COLD DRAWING OPERATIONS EACH
OF WHICH WAS FOL, OWED BY ANNEAL AT 1250 F FOR 1 HR.
A CHAMBER (AT-1) WAS SECTIONED FOR
METALLURGICAL ANALYSIS AFTER COMPLETION OF THE HOT
CUP OPERATION AND SUGSEQUENT HEAT TREATMENT. THE
TOTAL RANGE IN HARONESS OVER THE ENTIRE SECTION WAS
FROM 98 TO 99 ROCKWELL B. THE GRAIN FLOW
PATTERN WAS RADIAL IN THE DOME AND PARALLEL TO THE
LONGITUDINAL AXIE IN THE SIDEWALL OF THE CUP. THE
STRUCTURE POSSESGED A RELATIVELY FINE FERRITIC GRAIN
(ASTM 7 TO 8) AND WAS COMPLETELY SPHEROIDIZED.
PARTIAL DECARBUR, ZATION AFTER NORMALIZING TREATMENT
WAS INDICATED BY AN AVERAGE CARBON CONTENT OF $0,34 \%$
IN THE OUTER $0.0 \cap 5$ IN. OF MATERIAL AS COMPARED TO
0.438 CARBON IN THE 0.005- TO O,OIO-IN. LAYER.
THE MICROSTRUCTURE AND GRAIN FLOW IN ALL SECTIONS
ARE IN THE OPTIMUM CONDITION FOR SUBSEQUENT COLD
WORK.

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492

```
AD-272 353
    ORDNANCE MISSION WHITE SANDS MISSILE RANGE N MEX
    FERSHING MISSILE 309 AND TEL NR }7\mathrm{ HIGH AND LOW
```

 TEMPERATURE TESTG,
 FEB 62 5p WELLS, JAMES L, JR, :
 BAXTER, JAMES :
 REPT. NO, SPECIAL-58
PROJ: 516-05-011
UNCLASSIFIFD REPORT

HIGH AND LOW TEMPERATURE RELIABILITY TESTS WERE
CONDUCTED ON THE PERSHING MISSILE 309, IN THE
ENVIRONMENTAL TEST CHAMBER TO DETERMINE THE SYSTEM'S
RELIABILITY, RUGGEDNESS, AND RELATED HUMAN FACTORS
DURING CONDITIONS OF HIGH AND LOW TEMPERATURE
EXTREMES. THE PERSHING MISSILE 309 CONSISTED OF
AN INERT WARHEAD, GUIDANCE AND CONTROL UNIT, AND
DUMMY FIRST AND EECOND STAGE MOTORS: ELEVATING
LAUNCHER, INCLUDING THE CABLE MAST: AND A SET OF
ELECTRICAL BLANKETS FOR THE MISSILE, MALFUNCTIONS
OF THE WARHEAD FUZE DURING EXTREME PHASES OF
TEMPERATURE TESTING PROVED IT UNACCEPTABLE, OIL
PRESSURE ON TWO HYDROPACKS DROPPED DURING THE LOW
TEMPERATURE CYCLES ON ONE HYDROPACK FROZE, RENDERING
IT INOPERABLE. EOUIPMENT BECAME TOO HOT TO HANDLE
COMFORTABLY WITHOUT PROTECTIVE CLOTHING DURING
CHECKOUT PROCEDUQES AT HIGH TEMPERATURES, DURING
LOW-TEMPERATURE TEST. THE WARHEAD SECTION DRAINED OFF
HEAT GENERATED BY BLANKETS COVERING THE GUIDANCE AND
CONTROL SECTION, THEREBY CAUSING THE GUIDANCE AND
CONTROL COMPARTMFNT TO DROP BELOW OPERATION
TEMPERATURE. IT WAS RECOMMENDED THAT STUDIES BE
CONTINUED ON WARHEAD FUZE OPERATION AT EXTREME
TEMPERATURES.

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
AD-269 501
    ARMY ELECTRONIC PROVING GROUND FORT HUACHUCA ARIZ
    EVALUATION OF MODIFIED TELETYPEWRITER SET MODEL-
    104
        NOV 61 IV
REPT, NO, 2126
CONTRACT: AF49 63& 178
MONITOR: AFOSR 1802
            UNCLASSIFIED REPORT
        NOFORN
DESGRIPTORS: *OMMUNICATION SYSTEMS, -TELETYPE SYSTEMS,
    ARMIES, COMMUNICATION EQUIPMENT, GUIDED MISSILES,
    MINIATURE ELECTRICAL EQUIPMENT, RELIABILITY, SURFACE-TO-
    SURFACE, TESTS (U)
IDENTIFIERS: PERSHING (U)
```

TESTS WERE CONDU TED TO DETERMINE THE PERFORMANCE AND SUITABILITY OF THE MODIFIED TELETYPEWRITER SET MODEL $104 \mathrm{FOR}_{R}$ USE AS A LOW ECHELON TACTICAL TELETYPEWRITER AND FOR USE WITH PERSHING MISSILE COMMUNICATIONS SYSTEM. RESULTS OF THE TESTS REVEALED THAT THE MODEL 104 V STILL HAS OPERATING DEFICIENCIES WHICH SHOULD BE CORRECTED. THE PRIMARY DEFICIENCY ENCOUNTERED DURING THE $10 O H O U R$ RELIABILITY TEST WAS THE MALFUNCTION OF THE LATERAL PRINT-PREVENT ANB ADVANCE-PREVENT ADJUSTMENTS, THESE ADJUSTMENT MALFUNCTIONS CAUSED NONLEGIBLE PRINT COPY AFTER SEVERAL HOURS OF OPERATION, BECAUSE THE SPRING TENSION OF THE PAPER FEED MECHANISM IS NOT GREAT ENOUGH TO HOLD THE PAPER AGAINST THE PLATEN, IT CAUSES THE PAPER TO F ED UPWARD AT AN ANGLE RATHER THAN STRAIGHT RESULTING IN NONLEGIBLE COPY. THE ON, OFF, AND LIGHT SWITCHES AS PRESENTLY LOCATED IN THE CASE COVER ARE EASILY BENT OR BROKEN. END-OF-LINE AND MOTOR-STOP FEATURES ARE NOT FRESENT ON TELETYPEWRITER MODEL 104V. NOTWITHSTANDING PRESENT DEFICIENCIES, TELETYPEWRITER MODEL 104 V IS A CONSIDERABLE IMPROVEMENT OVER THE ORIGINAL MODEL 104. (AUTHOR)

DDC REPORT BIBL, OGRAPHY SEARCH CONTROL NO, 021492

```
AD-267 887
    NAVAL RADIOLOGICAL DEFENSE LAB SAN FRANCISCO CALIF
            OCT 6I IV SINCLAIR,K,F,IHITCHCOCK,G,W,:
REPT, NO, TRS34
                    UNGLASSIFIFD REPORT
DESCRIPTORS: AMPL,FIERS, COMBUSTION, CRYSTAL DETECTORS,
    DETECTION, ERRORS*, FAILURE (MECHANICS), FRACTURE
    (MECHANICS), GUIDED MISSILES, NON-DESTRUCTIVE TESTING,
    PHOTOTUBES, QUALITY CONTROL, ROCKET MOTORS, ROCKET
    PROPELLANTS, ROCKET PROPULSION, SCINTILLATION COUNTERS,
    SOLID ROCKET PROPELLANTS, TEST EQUIPMENT, TEST METHODS,
    X-RAY TUBES
                                    (U)
IDENTIFIERS: MINUTEMAN, PERSHING, POLARIS (U)
THE DESIGN AND PERFORMANCE OF CONTINUOUS SCAN TYPE
FLAW DETECTION SYSTEMS ARE PRESENTED FOR USE IN THE
DETAILED EXAMINATION OF SOLID PROPELLANT MISSILE
MOTORS. FACTORS AFFECTING PERFORMANCE ARE
DISCUSSED INDIVINUALLY AND RELATED IN A SYSTEM
EQUATION, AN EXPERIMENTAL SYSTEM, USING TWO
SCINTILLATION DETECTORS IN A DIFFERENTIAL
CONFIGURATION, IE DESCRIBED AND TESTS PERFORMED USING
ISOTOPIC AND X-RAY SOURCES ARE REVIEWED. THE
PREDICTED PERFORMANCE AND THE EXPERIMENTAL RESULTS
OBTAINED ARE COMPARED. (AUTHOR)

\section*{UNCLASSIFIED}

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492
```

AD-265 001
LYON INC DETROIT MICH
DEVELOPMENT OF DFEP DRAWN - ONE PIECE HIGH
PERFORMANCE ROCKFT MOTOR CASE
JUL 6I IV MARTIN,WAYNE A, ;
CONTRACT: DAZO O1RORD23004

```

\section*{UNGLASSIFIED REPORT}
```

DESCRIPTORS: *ROCKET CASES, ROCKET MOTORS, DEFORMATION,
DIES, DRAWING (MACHINE PROCESSING), FORGING, HEAT
TREATMENT, IRON ALLOYS, MANUFACTURING METHODS, NICKEL
ALLOYS, SMALL TOOLS, SOLID ROCKET PROPELLANTS, STEEL,
TESTS, TORPEDO COMPONENTS (U)
IDENTIFIERS: PERSHING (U)

```

ESTIMATED DELIVERY SCHEDULES ARE PRESENTED FOR THE SPECIAL TOOLING, DIEG AND PUNCHES, REQUIRED FOR THE PRODUCTION OF THE DEEP-DRAWN 4O-IN, -DIAM ROCKET CASES, EVALUATION DATA FOR THE PROCESS ANNEALING AND COLD REDUCTION OF 20 AND 258 NI STEELS ARE ALSO PRESENTED. THE 208 NI WAS ANNEALED AT 1500 F FOR 1 HR AND THE 258 NI AT 1600 F FOR 1 HR. NO FRACTURES WERE NOTED AFTER 6 REDUCTIONS OF 30.5 TO 34.58 ON THE 208 NI. AND 6 REDUCTIONS OF 26 TO 298 ON THE 258 NI ALLOY. PRELIMINARY ATTEMPTS WERE MADE TO DEEP DRAW THE 2O\& NI ALLOY ON THE GUB-SCALE (2-IN) TOOLING. THE RESULTS INDICATED THAT IT IS FEASIBLE TO COLD DRAW THE MATERIAL.

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492
```

AD-264 713
LYON INC DETROIT MICH
DEVELOPMENT OF DFEP DRAWN-ONE PIECE HIGH PERFORMANGE
ROCKET MOTOR CASE
(U)
MAY 61 IV
CONTRACT: DAZO OIRORDZ3OO4

```
            UNCLASSIFIFD REPORT
DESCRIPTORS: *ROCKET CASES, ©STEEL, ©TITANIUM ALLOYS,
ALUMINUM ALLOYS, CHEMICAL ANALYSIS, CHROMIUM ALLOYS,
DEFORMATION, DIES, ORAWING (MACHINE PROCESSING),
FORGING, FRACTURE (MECHANICS), GRAIN STRUCTURES
(METALLURGY), HAR ENING, HEAT TREATMENT, IRON ALLOYS,
MANUFACTURING METHODS, MICROSTRUCTURE, NICKEL ALLOYS,
NONGDESTRUCTIVE TFSTING, ROCKET MOTORS, SMALL TOOLS,
SOLID ROCKET PROPFLLANTS, TENSILE PROPERTIES, TORPEDO
COMPONENTS, ULTRAGONIC RADIATION, VANADIUM ALLOYS (U)
IDENTIFIERS: PERSHING (U)

\section*{UNCLASSIFIED}

DDC REPORT BIBL OGRAPHY SEARCH CONTROL NO. O21492
```

AD-258 000
ABERDEEN FROVING GROUND MD
ENVIRONMENTAL TEGT OF PERSHING COMMUNICATIONS PACK
NO. 1
(U)
JUN 6I IV WILES,RAY L.:
REPT, NO. DPS 244
UNCLASSIFIED REPORT
DESCRIPTORS: CLIMATOLOGY, *COMMUNICATION EQUIPMENT,
*GUIDED MISSILES, *SHELTERS, *SURFACE-TO-SURFACE, AIR
CONDITIONING EQUIPMENT, ANTENNA MASTS, ELECTRIC POWER
PRODUCTION, GENERATORS, GROUND SUPPORT EQUIPMENT,
INSTRUMENTATION, MULTIPLEX, TELETYPE SYSTEMS, TEST
METHODS, TESTS, VYBRATORS (MECHANICAL), VOICE
COMMUNICATION SYSTEMS
(U)
IDENTIFIERS: AN/TRC-8O, PERSHING (U)

```
```

 UNCLASSIFIED
 DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO. O21492
 AD-252 853
LYON INC DETROIT MICH
DEVELOPMENT OF DEEP DRAWN - ONE PIECE HIGH
PERFORMANCE ROCKFT MOTOR CASE
(U)
FEB bl lv
CONTRACT: DAZO O1gORD23004
UNCLASSIFIED REPORT
NOFORN
DESCRIPTORS: *ROCKET CASES, HEAT TREATMENT, MACHINING,
MANUFACTURING METHODS*, ROCKET MOTORS, SOLID ROCKET
PROPELLANTS, STEEL
IDENTIFIERS: PERSHING (U)

```
```

SPECIFICATIONS ARE PRESENTED FOR 2O FORGED BILLET

```
SPECIFICATIONS ARE PRESENTED FOR 2O FORGED BILLET
BLOCKS OF VACUUM MELTED TRICENT (INCO 3OO-M), A
BLOCKS OF VACUUM MELTED TRICENT (INCO 3OO-M), A
CR-NI-MO-SI LOW ALLOY STEEL. THE MATERIAL
CR-NI-MO-SI LOW ALLOY STEEL. THE MATERIAL
SHALL BE PRODUCED BY ELECTRIC FURNACE AIR MELTING
SHALL BE PRODUCED BY ELECTRIC FURNACE AIR MELTING
FOLLOWED BY CONSUMABLE ELECTRODE VACUUM REMELTING.
FOLLOWED BY CONSUMABLE ELECTRODE VACUUM REMELTING.
THE INGOT THUS ORTAINED WILL BE REDUCED TO A
THE INGOT THUS ORTAINED WILL BE REDUCED TO A
BILLET WITH A REOUCTION RATIO BETWEEN 2,5/1 AND 3/1.
BILLET WITH A REOUCTION RATIO BETWEEN 2,5/1 AND 3/1.
MULTIPLES OF THIE BILLET SHALL BE UPSET FORGED BY
MULTIPLES OF THIE BILLET SHALL BE UPSET FORGED BY
AN UPSET RATIO BETWEEN 2.5/1 AND 3/1.
AN UPSET RATIO BETWEEN 2.5/1 AND 3/1.
SPECIFICATIONS ARE INCLUDED FOR CHEMICAL
SPECIFICATIONS ARE INCLUDED FOR CHEMICAL
COMPOSITION, QUALITY, MACRO-ETCH, NONMETALLIC
COMPOSITION, QUALITY, MACRO-ETCH, NONMETALLIC
INCLUSIONS, GRAIIN SITE, HEAT TREATMENT RESPONSE, TEST
INCLUSIONS, GRAIIN SITE, HEAT TREATMENT RESPONSE, TEST
RESPONSIBILITY, VERIFICATION TESTS, CERTIFICATION,
RESPONSIBILITY, VERIFICATION TESTS, CERTIFICATION,
PACKING, AND MARKING.
```

PACKING, AND MARKING.

```
```

 UNCLASSIFIED
 DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO, 021492
 AD-249 607L
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON D
C
DATA REDUCTION ANALYGIS OF PERSHING RADAR ALTIMETER
SYSTEM
IV CRAFT,RAY H.;
REPT, NO, RT TR 2 61
MONITOR: ABMA RT TR 2 61
UNCLASSIFIFD REPORT
DOD ONLY
DESCRIPTORS: *ATMOSPHERE ENTRY, *GUDED MISSILES,
*HEIGHT FINDING, *NOSE CONES, *RADAR, *RADIO ALTIMETERS,
ALTIMETERS, ERRORS, GUIDED MISSILE WARHEADS,
INSTRUMENTATION, MATHEMATICAL ANALYSIS (U)
IDENTIFIERS: PERSMING (U)

```

\section*{UNCLASSIFIED}
```

 DDC REPORT BIBL,OGRAPHY SEARCH CONTROL NO, 021492
 AD-247 318
POLYTECHNIC INST OF BROOKLYN N Y MICROWAVE RESEARCH
INST
NETWORK PROPERTIES OF DISCONTINUITIES IN MULTIMODE
CIRCULAR WAVEGUIDE
JUL 6O IV FELSEN,L,B,IKAHN,W,K,;
REPT. NO. PIBMRI-\&O3-6O
CONTRACT: DA-36-039-5C-78001, DA-36-039-SC-73219
PROJ: DA=3-99-15-108
UNCLASSIFIED REPORT
NOFORN
SUPPLEMENTARY NOTE, CONTINUATION OF CONTRACT DA=36-
039-SC-73219.
DESCRIPTORS: *WAVE TRANSMISSION, *WAVEGUIDES,
DIELECTRICS, ELECTROMAGNETIC WAVES, MATHEMATICAL
ANALYSIS, MEASUREMENT, PROPAGATION, SCATTERING
(U)
IDENTIFIERS: PERSHING
(U)

```

\section*{UNCLASSIFIED}
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
 AD-242 979
ARMY BALLISTIC MISSILE AGENCY REDSTONE ARSENAL ALA
HIGH ALTITUDE SIMULATOR
(U)
JUN 6O IV HOLDERER,OSCAR C.;
REPT. NO, ABMA-DA-TR-15-60
UNCLASSIFIED REPORT
NOFORN
DESCRIPTORS: *CONTROL SURFACES, *GUIDED MISSILES, *TEST
FACILITIES, AIRFOILS, CALIBRATION, DIFFUSERS, HIGH
ALTITUDE, MOBILE, SIMULATION, STRAIN GAGES, SURFACE-TO-
SURFACE
(U)
IDENTIFIERS: PERSHING
(U)

```
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
 AD-851 726L 9/2 5/1 16/1
PLANNING RESEARCH CORP LOS ANGELES CALIF
SUMMARY OF FINDINGS AND RECOMMENDATIONS OF
PHASE III, MANAGEMENT TECHNIQUES PHASE OF
THE STUDY OF PERSHING PLA COUNTDOWN
SOFTWARE.
DESCRIPTIVE NOTE: TECHNICAL ADVISEMENT MEMO.,
APR 69 31P FOSTER,RICHARD W. :
REPT, NO, 319-4, PRC-D-2036
CONTRACT: DAAHO1-68-C-2O40
UNGLASSIFIED REPORT
DISTRIBUTION: CONTROLLED: ALL REQUESTS TO
COMMANDING GENERAL, ARMY MATERIEL COMMAND,
ATTN: AMCPM-PE-X, REDSTONE ARSENAL, ALA.
35809.
DESCRIPTORS: 1*COMPUTER PROGRAMS, CHECKOUT
PROCEDURES), MANAGEMENT ENGINEERING, COSTS,
MANPOWER, CONFIGURATION, SPECIFICATIONS, GUIDED
MISSILES(SURFACE-TO-SURFACE), EFFECTIVENESS,
ACCEPTABILITY

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, 021492

```
AD-849 898L 16/3 13/6
    MARTIN MARIETTA CORP ORLANDO FLA ORLANDO DIV
    ROAD SHOCK AND VIBRATION TEST OF THE
    PERSHING WARHEAD SECTION AND THE H=4211B
    HANDLING DEVICE MOUNTED ON THE PERSHING IA
    IMPROVED ERECTOR-LAUNCHER VEHICLE.
DESCRIPTIVE NOTE: TECHNICAL REPT,,
            OCT 68 79P FRISBIE,WALTER ;
MONITOR: PA TR=3811
            UNGLASSIFIED REPORT
    DISTRIBUTION: CONTROLLED: ALL REQUESTS TO
    COMMANDING OFFICER, PICATINNY ARSENAL, DOVER,
    N,J. O7801.
DESCRIPTORS: (*GUIDED MISSILE WARHEADS, ROAD
    TESTS), (*TRANSPORTER-ERECTORS, NUCLEAR
    WARHEADS), GUIDED MISSILES(SURFACE-TO-SURFACE),
    MOBILE, ARMY, VIBRATION, SHOCK(MECHANICS),
    HANDLING, VIBRATION ISOLATORS, INSTRUMENTATION,
    ACCELEROMETERS, TELEMETER SYSTEMS, TRAILERS,
    ACCEPTABILITY, GUIDED MISSILE LAUNCHERS, SHOCK
    ABSORBERS
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
    ```
```

AD=845 684L 16/4.2 15/5

```
AD=845 684L 16/4.2 15/5
    ARMY AIRBORNE ELECTRONICS AND SPECIAL WARFARE BOARD FORT
    ARMY AIRBORNE ELECTRONICS AND SPECIAL WARFARE BOARD FORT
    BRAGG N C
    BRAGG N C
    SERVICE TEST (AIR PORTABILITY) OF THE
    SERVICE TEST (AIR PORTABILITY) OF THE
    PERSHING IA MISSILE SYSTEM,
    PERSHING IA MISSILE SYSTEM,
        (U)
        (U)
DESCRIPTIVE NOTE: LETTER REPT,
DESCRIPTIVE NOTE: LETTER REPT,
        OCT 68 24P
        OCT 68 24P
REPT. NO, USAAESWBD-AB-6766
REPT. NO, USAAESWBD-AB-6766
PROJ: RDT/E-1-X-279191-D-678, USATECOM-23000425
PROJ: RDT/E-1-X-279191-D-678, USATECOM-23000425
TASK: 1-X-279191-D-67802
TASK: 1-X-279191-D-67802
            UNCLASSIFIED REPORT
    DISTRIBUTION: DOD ONLY: OTHERS TO COMMANDING
    GENERAL, ARMY TEST AND EVALUATION COMMAND,
    ATTN: AMSTA-FA. ABERDEEN PROVING GROUND,
    MD. 21005.
DESCRIPTORS: (*GUIDED MISSILESISURFACE-TO-
    SURFA(E), AIR TRANSPORTATION, TRANSPORT
    PLANES, ACCEPTABILITY, FITTINGS, HANDLING,
    DAMAGE CONTROL, SAFETY, COMPATIBILITY, TACTICAL
    WEAPONS
IDENTIFIERS: M-4 TRAILERS, PERSHING, C-130
    AIRCRAFT, C-124 AIRCRAFT
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
 AD=841 844L 20/6 16/4.2
PITTSBURGH UNIV WASHINGTON D C RESEARCH STAFF
AZIMUTH-LAYING TRAINING DEVICE FOR PERSHING
MISSILE.
DESCRIPTIVE NOTE: TECHNICAL INFORMATION REPT,
MAY 68 14P
CONTRACT: DA=49-186-AMC=214(D)
PROJ: DA-1-X-279191-D-678
MONITOR: AMC TIR=33,3,3,9
UNCLASSIFIED REPORT
DISTRIBUTION: USGO: OTHERS TO COMMANDING GENERAL,
ARMY MISSILE COMMAND, ATTN: AMCPM-PE.
REDSTONE ARSENAL, ALA, 35809.
DESCRIPTORS: (*GUIDED MISSILES(SURFACE-TO-
SURFACE), AIMING (IRCLES), (*THEODOLITES,
TRAINING DEVICES), STABILIZED PLATFORMS,
ALIGNMENT, AZIMUTH, PRISMS(OPTICS), DISPLAY
SYSTEMS, DESIGN, CHECKOUT PROCEDURES,
PERFORMANCE(ENGINEERING)
(U)
IDENTIFIERS: PERSHING, *AZIMUTH LAYING (U)
THIS TECHNICAL INFORMATION REPORT DESCRIBES A
DEVICE FOR TRAINING THE ENTIRE AZIMUTH-LAYING GREW OF
THE PERSHING MISSILE SYSTEM FIRING BATTERY
INDEPENDENTLY OF OTHER PERSONNEL AND EQUIPMENT,
USE OF THE DEVICE WILL MAKE IT POSSIBLE TO CONDUCT
FREQUENT AND REPETITIVE EXERCISES WITH REALISM, FOR
EFFECTIVE TRAINING AND MAINTENANCE OF PROFICIENCY IN
PERSHING MISSILE SYSTEM AZIMUTH-LAYING SKILLS.
THE TRAINING DEVICE CONSISTS OF TWO PRISMS
OPTICALLY IDENTICAL TO THE PRISM ON THE MISSILE'S
STABILIZED PLATFORM, AN ALIGNMENT FIXTURE FOR
POSITIONING BOTH PRISMS, AND A CONTROL PANEL, THE
DEVICE WEIGHS ABOUT 1SO POUNDS AND OPERATES FROM A
POWER SUPPLY OF EITHER 105-125 VOLTS, 50, 60, OR 400
HERTZ, SINGLE-PHASE AC, OR 24-30 VOLTS DC,
(AUTHOR)

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
AD=836 709L 16/4.2 5/9
    ARMY ARTILLERY BOARD FORT SILL OKLA
    SERVICE TEST OF AZIMUTH LAYING TRAINING DEVICE
    (PERSHING).
DESCRIPTIVE NOTE: FINAL REPT, 2 JAN-25 MAR 68,
        JUL 68 GIP BOGDANOWICZ,FRANK T. :
    STROHM,ALVIN W. ;
REPT. NO. USAARTYBD=FA =1566
PROJ: RDT/E-1-W-2-79191-D-678, USATECOM-2-3-0004-
    24
        UNCLASSIFIED REPORT
    DISTRIBUTION: CONTROLLED: ALL REQUESTS TO ARMY
    MISSILE COMMAND, ATTN: AMCPM-PE, REDSTONE
    ARSENAL, ALA. 35809,
DESCRIPTORS: (*GUIDED MISSILESISURFACE-TO-
    SURFACE), TRAINING DEVICESI, MOBILE,
    SIMULATORRS, AZIMUTH, TRAINING,
    PRISMS(OPTICS), RELIABILITY, ARTILLERY.
    STABILIZED PLATFORMS, ALIGNMENT, ARMY, TACTICAL
    WEAPONS, GUNNERY TRAINERS, ENVIRONMENT, TEST
    METHODS

\section*{UNCLASSIFIED}

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, 021492
```

AD-822 427L 5/5 17/2.1
HUMAN ENGINEERING LABS ABERDEEN PROVING GROUND MD
A HUMAN FACTORS ENGINEERING EVALUATION OF THE
PERSHING WEAPON SYSTEM: COMMUNICATIONS PACK (AN/TRC-
801.
(U)
DESCRIIPTIVE NOTE: TECHNICAL MEMO, 10 JUN 60-14 JAN 61,
SEP 61 72P WEISS,ROGER ;
REPT, NO, HEL-TM-7-61
UNCLASSIFIED REPORT
DISTRIBUTION: DOD ONLY: OTHERS TO ARMY
MISSILE COMMAND, ATTN: AMCPM-PE-M, REDSTONE
ARSENAL, ALA, 35809.
DESCRIPTORS: (*HUMAN ENGINEERING, *RADIO
COMMUNICATION SYSTEMSI, GROUND SUPPORT EQUIPMENT,
DESIGN, GUIDED MISSILES(SURFACE-TO-SURFACE),
CONTROL PANELS, CONTROL KNOBS, CONFIGURATION,
MALFUNCTIONS(u)

```
IDENTIFIERS: PERSHING, AN/TRC-80 ..... (U)
```

THIS REPORT PRESENTS THE RESULTS OF THE HUMAN FACTORS ENGINEERING EVALUATION OF THE PERSHING COMMUNICATIONS PACK (AN/TRC-80) CONDUCTED DURING THE PERIOD 10 JUNE 1960 TO 14 JANUARY 1961. THE UNIT STUDIED CONTAINED MANY DEFICIENCIES AND SHORTCOMINGS. THE COMMUNICATIONS PACK IS PRESENTLY UNDERGOING REDESIGN. (AUTHOR)

```
AD-802 302 21/8,2
    ARDE-PORTLAND ING PARAMUS N J
    CRYOGENIC FORMING OF FLIGHT WEIGHT EXPERIMENTAL SOLID
    PROPELLANT ROCKET CASES. (U)
DESCRIPTIVE NOTE: FINAL REPT, JUN GZ-JUN 65,
        JUL 65 13P MCDONOUGH,ROGER G. ;ALPER,
    RALPH H. :
REPT, NO, AMR-168
CONTRACT: DA-30-069-ORD-3501
    UNCLASSIFIED REPORT
DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF ARMY
MISSILE COMMAND, REDSTONE ARSENAL, HUNTSVILLE,
ALA, 35809.
```

DESCRIPTORS: (OROCKET CASES, MANUFACTURING METHODS),
(OCRYOGENICS, ROCKET CASES), PRODUCTION,
PERFORMANCE (ENGINEERING), STRESSES, EQUATIONS,
CONFIGURATION, MODELS(SIMULATIONS), STRETCH
FORMING, STAINLESS STEEL, AUSTENITE, ROCKET
COMPONENTS, HYDROFORMINGIMECHANICAL),
PROGRAMMING(COMPUTERS), SECOND-STAGE MOTORS,
WEIGHT, ROCKET MOTORSISOLID PROPELLANT)
IDENTIFIERS: PERSHING, ARDEFORM PROCESS,
STAINLESS STEEL BOI
THE DEVELOPMENT AND FABRICATION OF EXPERIMENTAL
SIMULATED SECOND STAGE PERSHING ROCKET CASE
HARDWARE WAS UNDERTAKEN THROUGH THE UTILIZATION OF
'AROEFORM' CRYOGENIC STRETCH FORMING TECHNIQUES,
COMPLETED VESSELS SUBJECTED TO HYDROBURST SHOWED
STRENGTHS AS HIGH AS 337,000 PSI AT -65 F AND 342 ,
800 PSI AT ROOM TEMPERATURE, THE CONFIGURATIONAL
FEATURES OF THE PERSHING CASE WERE FIRST
INVESTIGATED IN A SIMULATED SUBSCALE CASE PROGRAM,
FOLLOWED BY A HIGHER STRENGTH SUBSCALE PROGRAM.
THE FULL SCALE HARDWARE WAS THEN FABRICATED, USING
TECHNIQUES DEVELOPED IN THE SUBSCALE STUDIES, IT
WAS SHOWN THAT ELLIPTICAL HEADS, SKIRT ATTACHMENTS,
AND NOZZLE END RINGS COULD BE READILY FORMED IN
VESSELS WITH VERY HIGH STRENGTHS, UTILIZING THE
ARDEFORM PROCESS, EQUATIONS WERE DERIVED,
RELATING THE PREFORM SHAPE, MATERIAL PROPERTIES, AND
STRETCH PRESSURE TO THE FINAL SHAPE. THROUGH THE
USE OF A COMPUTER, IT WAS POSSIBLE TO DESIGN THE
PREFORM VESSEL TO ACHIEVE A PRESCRIBED SHAPE WHEN
STRETCHED. (AUTHOR)

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492

```
AD=635 243 15/5 16/4 13/10
    ARMY TRANSPORTATION ENGINEERING AGENCY FORT EUSTIS VA
    PERSHING TRANSPORTABILITY STUDY, VESSEL STOWAGE.
    VOLUME IV.
DESCRIPTIVE NOTE: ENGINEERING REPT,
        JUL 66 3OP GRIER, JOHN H. ;
REPT, NO, USATEA-66-11-VOL-4.
```


UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE: SEE ALSO AD-635 240 .

DESCRIPTORS: (*GUIDED MISSILES(SURFACE-TO-SURFACE),
SHIPBORNE), (*SHIPPING(MARINE), GUIDED
MISSILES (SURFACE-TO-SURFACE)), (*TRANSPORTATION, GUIDED MISSILES(SURFACE-TO-SURFACE)), CONTAINERS, MOORING, CARGO SHIPS, CHOCKS,
LOADING(MECHANICS), STORAGE, HANDLING, SECONDSTAGE MOTORS, LOGISTICS
(U)

IDENTIFIERS: PERSHING, M=476 CONTAINERS (U)
A VESSEL STOWAGE STATIC STUDY WAS CONDUCTED ON A PERSHING MISSILE SYSTEM SECOND STAGE MOTOR CONTAINER, XM 476. THE PURPOSE OF THE STUDY WAS TO EVALUATE THE STRUCTURAL INTEGRITY OF A PROPOSED PROCEDURE FOR THE STOWAGE OF AN XM 476 AND SIMILAR CONTAINERS ABOARD A VESSEL SUBJECTED TO ADVERSE OCEAN ENVIRONMENTS, THAT IS, STATE OF SEA, BOWDITCH SCALE S-7. DYNAMIC LOADINGS LIKELY TO ACCRUE FROM SUCH AN ENVIRONMENT WERE EMPIRICALLY REDUCED TO STATIC CRITERIA AND MEASUREMENT, OTHER PORTIONS OF THE OVERALL STUDY WILL OBTAIN ACTUAL MEASUREMENTS OF THE DYNAMIC LOADING. THE APPLIED STATIC LOADING CONDITIONS WERE (1) 3G VERTICAL, (2) $3 G$ TRANSVERSE, AND (3) IG LONGITUDINAL, RESULTS OF THE STUDY SHOWED THAT THE CONTAINER SKIDS DO NOT HAVE THE REQUIRED STRUCTURAL STRENGTH TO RESIST THE APPLIED STATIC LOADING CONDITIONS. THE PROPOSED STOWAGE PLAN AND RESTRAINING PROCEDURE PROVED TO BE SATISFACTORY IN WITHSTANDING THE APPLIED STATIC LOADS. (AUTHOR)

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, 021492
AD-635 241 15/5 16/4 13/6
    ARMY TRANSPORTATION ENGINEERING AGENCY FORT EUSTIS VA
    PERSHING TRANSPORTABILITY STUDY, CONUS RAILWAYS,
    VOLUME II.
    (U)
DESCRIPTIVE NOTE: ENGINEERING REPT,
        JUL 66 S3P GRIER, JOHN H. ;
REPT, NO, USATEA-66-11-VOL-2,
```


UNCLASSIFIED REPORT

```
SUPPLEMENTARY NOTE: SEE ALSO AD-635 240.
DESCRIPTORS: (GUIDED MISSILES(SURFACE-TO-SURFACE),
LOGISTICS), (*RAILWAY CARS, GUIDED
MISSILES(SURFACE-TO-SURFACE)), (*TRANSPORTATION,
GUIDED MISSILES(SURFACE-TO-SURFACE)), RAILROADS,
CONTAINERS, MOORING, HANDLING, IMPACT TESTS,
SHOCKS (MECHANICS), VIBRATION, CHOCKS, BOOSTER
MOTORS, SECOND-STAGE MOTORS, GUIDED MISSILE
COMPONENTS
IDENTIFIERS: PERSHING, CONUS RAILWAY, M-474
CONTAINERS, M-475 CONTAINERS, M-476
CONTAINERS
CONUS RAILCARS WERE USED IN CONDUCTING RAILCAR IMPACT TESTS ON THREE RESEARCH AND DEVELOPMENT CONTAINERS: THE PERSHING MISSILE GUIDANCE AND CONTROL SECTION CONTAINER (XM 474) AND THE FIRST AND SECOND STAGE MOTOR CONTAINERS IXM 475 AND XM 476), DATA FROM THE TESTS WERE USED TO DETERMINE SCIENTIFICALLY THE IMPOSED SHOCKS ON THE CONTAINERS AND TO EVALUATE THE STRUCTURAL ADEQUACY OF THE TIEDOWN AND RESTRAINT ARRANGEMENTS WHEN SUBJECTED TO CONUS RAILWAY ENVIRONMENTS CONTAINED IN DEPARTMENT OF THE ARMY TB S5-100. THE RESULTS OF THIS STUDY DEMONSTRATE THAT THE ARRANGEMENT RECOMMENDED IN USATEA REPORT 66-11., VOLUME III, AD-635 242, AND SHOWN IN THIS REPORT AS FIGURES 1 AND 2, SATISFACTORILY WITHSTOOD THE TEST ENVIRONMENTS AND PROVIDED GREATER STRUCTURAL INTEGRITY THAN THE ARRANGEMENT PRESCRIBED IN THE SAVANNA ARMY DEPOT DRAWING NO, 5425, PAGE 9. IT IS RECOMMENDED THAT THIS SYSTEM BE ADOPTED FOR CONUS AND FOREIGN RAILCAR MOVEMENTS.

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492
```

AD-618 225
HARRY DIAMOND LABS WASHINGTON D C
ALTIMETER FOR REENTRY VEHICLE, DESIGN PROPOSAL, (U)
JUN G5 IV GOODMAN,ROBERT S. :
REPT, NO, TM-65-29
PROJ: Ol500

```

UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:
DESCRIPTORS: (*RADIO ALTIMETERS, REENTRY VEHICLES),
(*REENTRY VEHICLES, RADIO ALTIMETERS), HEIGHT
FINDING, ECHO RANGING, DESIGN, GUIDED MISSILES
COMPONENTS, RADAR EQUIPMENT, RANGE FINDING,
TELEMETERING TRANSMITTERS, TELEMETER SYSTEMS,
TRANSPONDERS, GUIDED MISSILE TRAJECTORIES,
MONITORS (U)
IDENTIFIERS: PERSHING (U)

THE REPORT DESCRIBES A PROPOSED DESIGN OF AN
ALTIMETER SYSTEM TO GIVE REENTRY ALTITUDE DATA AND HEIGHT-OF-BURST INFORMATION, THE INTENDED
APPLICATION OF THE PROPOSED SYSTEM REQUIRES A
MISSILE-BORNE ALTIMETER THAT IS SIMILAR TO THE PULSE RADAR RANGING DEVICE DEVELOPED BY HDL FOR THE
PERSHING MISSILE, THE ASSOCIATED DATA
ACQUISITION STATION (DAS) MUST BE CAPABLE OF
OPERATING EITHER GROUND BASED OR AIRBORNE.
OPERATION OF THE SYSTEM PROPOSED REQUIRES SIMPLY A
TRANSMITTER AND TRANSPONDER CONTAINED IN THE REENTRY
VEHICLE AND A DAS LOCATED IN EITHER AN AIRPLANE OR
SURFACE STATION, THE ALTITUDE DATA ARE RECORDED IN
DIGITAL FORM, TOGETHER WITH AN ANALOG RECORD OF TM
DATA. THE RECORDED INFORMATION IS PROCESSED LATER
BY A COMPUTER. THE DESIGN IS BASED ON A \(4 O-F T\)
SYSTEM ACCURACY REQUIREMENT AND NOT ON COMPONENT
LIMITATION. FEASIBILITY OF THE DESIGN CONCEPT HAS
BEEN PROVED IN FIVE FLIGHTS UNDER PERSHING MISSILE
ENVIRONMENT, THE ACCURACY OF THE PERSHING
ALTIMETER WAS APPROXIMATELY = 15 FT, A DETAILED
DESCRIPTION OF THE PROPOSED ALTIMETER DESIGN AND ITS
THEORY OF OPERATION ARE REPORTED, (AUTHOR)

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
```

AD-602 774
ARDE-PORTLAND INC PARAMUS N J
CRYOGENIG STRETCH-FORMING OF SOLID PROPELLANT ROCKET
CASES.
(U)
DESCRIPTIVE NOTE: QUARTERLY REPT, 8 FOR 1 MAR 63-31
MAY 64,
MAY 26P ALPER,R. H. ;
CONTRACT: DA30 0690RD3501

```

UNCLASSIFIED REPORT
```

SUPPLEMENTARY NOTE:

```
DESCRIPTORS: (*ROCKET CASES, STRETCH FORMING), ROCKET
    COMPONENTS, MODELS (SIMULATIONS), MANUFACTURING METHODS,
    DIES, TOLERANCES (MECHANICS), MACHINING, WELDS,
    STRESSES, TENSILE PROPERTIES, METAL SPINNING, ROCKET
    MOTOR NOZZLES, ATTACHMENT, ROCKET MOTORS ISOLID
    PROPELLANT), GUIDED MISSILES (SURFACE-TO-SURFACE) (U)
IDENTIFIERS: PERSHING (U)
THE EFFECT OF CLOSER DIE TOLERANCES AND ADDITIONAL
OVERPRESSURE ON THE OUT-OF-ROUNDNESS OF THE
PERSHING SUBSCALE CASES WAS EXAMINED AND DETERMINED
TO SIGNIFICANTLY REDUCE THE TOLERANCES ON THE VESSEL.
THE EFFECT OF THE ADDITION OF SKIRTS AND END RINGS
TO STRETGHED PERSHING SUBSCALE VESSELS ON THE ROOM
TEMPERATURE STRENGTH LEVEL WAS DETERMINED. NO
SIGNIFICANT DECREASE IN YIELD STRENGTH OF THE VESSEL
WAS NOTED, SOME PROBLEMS IN THE SPINNING OF THE
COMPONENTS FOR THE FULL SCALE PREFORM WERE
ENCOUNTERED AND OVERCOME, DESIGN ANALYSIS OF THE
STRESSES ENCOUNTERED DURING THE STRETCHING OF BOTH
THE SUBSCALE AND PROJECTED FULL SCALE CASES INDICATED
MARGINAL STRESSES IN THE VICINITY OF THE JUNCTURE OF
THE AFT CONE AND THE AFT CYLINDER OF THE PREFORM,
DESIGN OF A PREFORM FOR A VERY HIGH STRENGTH
SUBSCALE CASE WAS STARTED, IAUTHORI
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
 AD-482 166L 21/8.2
AEROJET-GENERAL CORP AZUSA CALIF
POSSIBLE APPLICATIONS OF MECHANICAL IMPEDANCE
measurement techniques in testing Missile motor
CASES.
JAN 63 GP CUSICK,JOHN H. ;
UNCLASSIFIED REPORT
DISTRIBUTION: USGO: OTHERS TO COMMANDER, NAVAL
ORDNANCE SYSTEMS COMMAND, WASHINGTON, D, C.
20360. ATTN: 915.
SUPPLEMENTARY NOTE: NAD CONCORD PRESENTATION, POLARIS/
MINUTEMAN/PERSHING MEETING ON FILAMENT WOUND
CHAMBERS.
DESCRIPTORS: (*ROCKET CASES, *ILAMENT WOUND
CONSTRUCTION), GLASS TEXTILES, ULTTRASONIC
PROPERTIES, FORCE(MECHANICS), VELOCITY, TESTS,
SECOND-STAGE MOTORS, TEST EQUIPMENT, SEPARATION,
GUIDED MISSILES
IDENTIFIERS: POLARIS, MINUTEMAN, PERSHING,
MECHANICAL IMPEDANCE
POBBIBLE APPLICATIONS OF MECHANICAL IMPEDANCE MEASUREMENT
TECHNIQUES IN TESTING MISSILE MOTOR CASES.

```

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, 021492
```

AD-481 340L 17/7 16/4.2
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA ARMY INERTIAL
GUIDANGE AND CONTROL LAB
PENDULOUS PLATFORM,
SEP 65 SOP MCCARLEY,H, R, ;DOOLEY,J,
L. :
PROJ: DA-1LO13001A91A
MONITOR: AMC-RA RG-TR=65-32

```
UNCLASSIFIED REPORT
    DISTRIBUTION: USGO: OTHERS TO COMMANDING GENERAL,
    ARMY MISSILE COMMAND, REDSTONE ARSENAL, ALA.
    35809 . ATTN: AMSMI-RG.
DESCRIPTORS: ( GUIDED MISSILESISURFACE-TO-
    SURFACE), ACCELERATION), (*GUIDED
    MISSILESं (SURFACE-TO-SURFACE), FLIGHT CONTROL
    SYSTEMS), ( GUIDED MISSILES (SURFACE-TO-SURFACE),
    STABILIŻED PLATFORMS), GUIDANCE, CONTROLLABLE-
    THRUST ROCKET MOTORS, EQUATIONS OF MOTION, GUIDED
    MISSILE COMPONENTS, ACCELEROMETERS, GYRO
    STABILIZERS, RESONANT FREQUENGY, PITCH(MOTION).
    YAW, ROLL, GIMBALS, SYNCHROS, OSCILLATION,
    ERRORS
IDENTIFIERS: AVC(ACCELERATION VECTOR CONTROL),
    PENDULOUS PLATFORM, PENDULUM, HARMONIC
    OSCILLATORS (MECHANICS), SERGEANT, PERSHING,
    PIGA(PENDULOUS INTEGRATING GYRO ACCELEROMETER)

THE PENDULOUS PLATFORM IS BEING DEVELOPED FOR POSSIBLE USE IN BOTH MEDIUM- AND LONG-RANGE MISSILES. THE PLATFORM INDICATES THE MAGNITUDE AND DIRECTION OF THE MISSILE ACCELERATION VECTOR RELATIVE TO A FIXED STRAIGHT LINE AS ESTABLISHED BY A TWO-AXIS SPACE-FIXED REFERENCE, THE PLATFORM OUTPUT INFORMATION IS USED TO CONTROL THE MISSILE SO THAT THE DIRECTION OF ITS ACCELERATION VECTOR COINCIDES WITH THE FIXED STRAIGHT LINE REFERENCE THROUGHOUT GUIDED FLIGHT, THE MAGNITUDE OF THE ACCELERATION VECTOR MAY BE CONTROLLED AT CONSTANT LONGITUDINAL ACCELERATION BY A VARIABLE THRUST MOTOR, STUDIES ARE UNDERWAY TO INVESTIGATE THE ELIMINATION OF THE REQUIREMENT, FOR CONSTANT ACCELERATION. VELOCITY CUTOFF IS OBTAINED BY THE SOLUTION OF A SIMPLE GUIDANCE EQUATION, (AUTHOR)

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(A D-477\) & 026 & & 4/4 & & \(5 / 9\) & & & & \\
\hline ARMY & MISSILE & COMM & MAND & RED & TONE & ARSENAL & ALA & GROUND & SUPPORT \\
\hline \multicolumn{10}{|l|}{EQUIPMENT LAB} \\
\hline \multicolumn{3}{|l|}{PERSHING MISSILE} & \multicolumn{2}{|l|}{TRAINER} & \multicolumn{2}{|l|}{ENGINEERING} & \multicolumn{2}{|l|}{EVALUATION} & \multirow[b]{2}{*}{(U)} \\
\hline \multicolumn{2}{|l|}{TEST.} & & & & & & & & \\
\hline \multicolumn{3}{|l|}{DESCRIPTIVE NOTE:} & \multicolumn{3}{|l|}{TECHNICAL RE} & T. . & & & \\
\hline & R 63 & \multicolumn{2}{|l|}{59 P} & \multicolumn{3}{|c|}{COLE, MYRON} & , JR. & & \\
\hline BRAN & LEY,L. & - , & JR : E & UBA & KS. & \(E ., J R\) & - & & \\
\hline HAMMO & OND,K. & - : & CASE. & \(F\). & , , & . & & & \\
\hline PROJ: & \(D A=516=\) & 5-0 & & & & & & & \\
\hline MONITOR & : \(A M C\) - & & & RL & TN-6 & \(-6\) & & & \\
\hline
\end{tabular}

UNCLASSIFIED REPORT
DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF COMMANDING GENERAL, ARMY MISSILE COMMAND, REDSTONE ARSENAL, ALA. ATTN: GSEL.

DESCRIPTORS: (*GUIDED MISSILE SIMULATORS, *RELIABILITY), TESTS, ANALYSIS, CONTROL
SYSTEMS, COMPUTERS, SIMULATORS, HYDRAULIC SEALS, GUIDANCE, INVERTERS, STATIC DISCHARGERS, STABILIZED PLATFORMS. PERFORMANCE (ENGINEERING)
IDENTIFIERS: PERSHING


DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
```

AD-475 958 16/1
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
RELIABILITY EVALUATIONLLB
INDUCED TRANSPORTATION ENVIRONMENT TESTS OF TWO
PERSHING FIELD MAINTENANCE SHOPS.
DESCRIPTIVE NOTE: REPT, FOR MAR-APR 63.
JUN 63 KGP KANAAN ,MITCHELL J. :BATSON,
JAMES L.;
PROJ: DA-516-05-011
MONITOR: AMC-RA RT-TM-63-38
UNCLASSIFIED REPORT
DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF ARMY
MISSILE COMMAND, REDSTONE ARSENAL, ALA,
DESCRIPTORS: (*MAINTENANCE EQUIPMENT, ENVIRONMENTAL
TESTS), IMPACT SHOCK, SHOCK(MECHANICS), MOBILE,
HANDLING, TRANSPORTATION, VIBRATION, DROP
TESTING, RAILROADS, GUIDED MISSILES(SURFACE-TO-
SURFACE), MAINTENANCE, MEASURING
DEVICESIELECTRICAL + ELECTRONIC), ACCELERATION,
ACCELEROMETERS, TABLES, STRUCTURAL PROPERTIES,
DAMAGE ASSESSMENT, CHECKOUT EQUIPMENT,
IDENTIFIERS: PERSHING (U)

```
A SERIES OF TESTS WERE CONDUCTED ON TWO PERSHING FIELD MAINTENANCE SHOPS TO SIMULATE ENVIRONMENTS ENCOUNTERED DURING TRANSPORTATION AND HANDLING. THE TESTS INCLUDED ROAD SHOCK AND VIBRATION, RAILROAD HUMPING, AND DROPPING, CHECKOUT AFTER THE ROUGH ROAD AND RAILROAD HUMPING TESTS REVEALED NO STRUCTURAL DAMAGE OR EQUIPMENT MALFUNCTION. THE ELECTRICAL SHOP STRUCTURE FAILED IN SEVERAL AREAS DURING THE DROP TESTS, (AUTHOR)

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
```

AD-475 955 21/8.2
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
RELIABILITY EVALUATION LAB
TEST PLAN FOR DESIGN DEMONSTRATION TEST (DDT) PROGRAM
FOR PERSHING ROCKET MOTORS,
MAR 63 98P BATSON ,JAMES L. ;WRIGHT,
OLNEY H. ;
PROJ: DA-516-05-011
MONITOR: AMC-RA RT-TN-63-35

```

UNCLASSIFIED REPORT
DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF ARMY MISSILE REDSTONE ARSENAL, ALA.
DESCRIPTORS: (*ROCKET MOTORS(SOLID PROPELLANT).
    TEST METHODS), (*BOOSTER MOTORS, CAPTIVE TESTS),
    (*SECOND-STAGE MOTORS, CAPTIVE TESTS),
    ENVIRONMENTAL TESTS, SPECIFICATIONS, CYLINDRICAL
    BODIES, DESIGN, INTERIOR BALLISTICS, DAMAGE
    ASSESSMENT, TEMPERATURE, AGING(MATERIALS),
    THRUST, PRESSURE, STRAIN(MECHANICS), DATA,
    EQUATIONS, CORRECTIONS, MEASUREMENT
(U) IDENTIFIERS: PERSHING, THERMAL CYCLING (U)

THE PERSHING ROCKET MOTOR DESIGN
DEMONSTRATION TEST (DDT) PROGRAM IS DESIGNED TO VERIFY THAT THE XBI AND XEZ CYLINDRICAL CORE ROCKET MOTORS WILL PERFORM SATISFACTORILY ACCORDING TO THE DESIGN REQUIREMENTS OUTLINED IN ABMA-XPD 784, REVISION 5, THE TEST PROGRAM CONSISTS OF 18 CYLINDRICAL CORE MOTORS - EIGHT XB I MOTORS AND TEN XB 2 MOTORS. EACH MOTOR WILL BE SUBJECTED TO SELECTED ENVIRONMENTS, INSPECTED FOR DAMAGE, AND STATIC FIRED. THE BALLISTIC PERFORMANCE CHARACTERISTICS DETERMINED FROM THE TEST FIRINGS WILL BE COMPARED WITH THE REQUIRED SPECIFICATIONS LISTED IN ABMA-XPD 784 , REV, 5 FOR DESIGN DEMONSTRATION. (AUTHOR)
(U)

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
```

AD=474 849 17/7
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
RELIABILITY EVALUATION LAB
TEST PLAN FOR PERSHING GUIDANCE AND CONTROL
COMPARTMENT TEMPERATURE TESTS.
MAR 63 EYESTONE,RONALD G. :
PROJ:DA-516-05-011
MONITOR: AMC-RA RT-TN-63-34
UNCLASSIFIED REPORT
DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF ARMY
MISSILE COMMAND, REDSTONE ARSENAL, ALA.,
DESCRIPTORS: (*GUIDANCE, ENVIRONMENTAL TESTS),
GUIDED MISSILES(SURFACE-TO-SURFACE), TEMPERATURE,
INSTRUMENTATION, SOLAR RADIATION, HEAT, GAS
FLOW, AIR, AIR CONDITIONING EQUIPMENT, REDUCTION,
DATA PROCESSING SYSTEMS, DIGITAL SYSTEMS, ANALOG
SYSTEMS
IDENTIFIERS: PERSHING (U)
THIS SERIES OF TESTS SHALL DETERMINE OPERATING TEMPERATURE LEVELS OF STANDARD PERSHING GUIDANCE AND CONTROL EQUIPMENT UNDER ADVERSE TEMPERATURE AND SOLAR RADIATION CONDITIONS. THE TESTS ARE TO BE PERFORMED PRIMARILY TO INVESTIGATE THE POSSIBILITY OF ELIMINATING AIR CONDITIONING REQUIREMENTS WHEN THE MISSILE SYSTEM IS OPERATED IN AN EXTREME DESERT ENVIRONMENT. (AUTHOR)

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, 021492

```
AD-474 845 16/4
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
    RELIABILITY EVALUATION LAB
    SHOCK TEST OF THIRTY-TWO PERSHING INERTIA SWITCHES,
```

MAY $63 \quad 18 P$
FROJ: DA-516-05-011
MONITOR: AMC-RA

UNCLASSIFIED REPORT
DISTRIBUTION: NO FOREIGN WITHOUT APPROVAL OF ARMY MISSILE COMMAND, REDSTONE ARSENAL, ALA,

DESCRIPTORS: (*ELECTRIC SWITCHES, *GUIDED MISSILE
COMPONENTSI, ACCELERATION, VELOCITY, INERTIA,
RELIABILITY(ELECTRONICS), SHOCK RESISTANCE, TEMPERATURE, ENVIRONMENTAL TESTS, TEST EQUIPMENT, PERFORMANCE (ENGINEERING), CALIBRATION, ELECTROMAGNETIC SHIELDING
IDENTIFIERS: PERSHING, INERTIA SWITCHES
THESE TESTS WERE DESIGNED TO INVESTIGATE THE ACCURACY, REPEATABILITY, AND RELIABILITY OF EACH INTERTIA SWITCH TO INDICATE WHEN THEIR PRE-SET G LEVEL HAS BEEN EXCEEDED. THE TESTS WERE CONDUCTED DURING APRIL 1963. BASED ON THE TEST RESULTS AND THE GENERAL PERFORMANCE OF THE THIRTY-TWO SWITCHES, IT IS EXPECTED THAT THE SWITCHES WILL OPERATE ACCURATELY AND RELIABLY, PROVIDED THAT (1) THE SWITCHES ARE PROPERLY CALIBRATED AND (2) ADEQUATE MEASURES ARE TAKEN TO SHIELD THE SWITCHES FROM EXTERNAL MAGNETIC INFLUENCES UNDER SERVICE CONDITIONS, (AUTHOR)

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O2.1492
AD-473 973
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
    RELIABILITY EVALUATION LAB
    PERSHING WARHEAD SEPARATION (PAL) TEST PLAN, (U)
        JAN 64 GP GASSAWAY,JOHNFF:
REPT, NO, RT-TN-64-6
PROJ:DA-516-05-011
            UNCLASSIFIED REPORT
    NO PUBLIC OR FOREIGN RELEASE,
DESCRIPTORS: (*GIDED MISSILE WARHEADS.
    SEPARATIONI, TEST METHODS, SIMULATION, TEST
    EQUIPMENT, GUIDED MISSILES(SURFACE-TO-SURFACE),
    CABLE ASSEMBLIES
        (U)
IDENTIFIERS: PERSHING
THIS TEST PLAN PROVIDES INFORMATION AND DIRECTION FOR SETUP AND PERFORMANCE OF PERSHING WARHEAD SEPARATION TESTS. THE WARHEAD AND GUIDANCE AND CONTROL SECTION FROM MISSILE 303 WILL BE UTILIZED FOR THE TESTS. THE WARHEAD WILL BE MOUNTED HORIZONTALLY IN A SPECIAL TEST FIXTURE WHICH ALLOWS THE WARHEAD TO ACCELERATE DOWN A FIXED TRACK UPON SEPARATION, TACTICAL GUIDANCE AND CONTROL TO WARHEAD CABLES AND CONNECTORS WILL BE TESTED AND USED AS A BASIS FOR COMPARISON FOR THE NEWLY DESIGNED PAL CABLES AND CONNECTORS WHICH WILL ALSO BE TESTED, A TOTAL OF SIX SEPARATIONS WILL BE MADE, THESE TESTS ARE TO BE PERFORMED BY THE T +RE LAB AT REDSTONE ARSENAL, ALABAMA, (AUTHOR)
```

 DOC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
 AD-473 971
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
RELIABILITY EVALUATION LAB
TEST PLAN FOR ROUGH ROAD TESTING OF THE ELECTRICAL
AND REPAIR PARTS SHOPS OF PERSHING MISSILE SYSTEM, (U)
FEB 63 12P KANAAN ,M, J, BATSON,J. L.
;
REPT, NO, RT-TN-63-39
PROJ: DA=5!6-05-011
UNCLASSIFIED REPORT
NO PUBLIC OR FOREIGN RELEASE.
DESCRIPTORS: (*GUIDED MISSILES(SURFACE-TO-SURFACE),
*GROUND SUPPORT EQUIPMENTI, MAINTENANCE EQUIPMENT,
ELECTRIGAL EQUIPMENT, TEST EQUIPMENT, TEST
METHODS, TRANSPORTATION(U)
IDENTIFIERS: PERSHING, REPAIR SHOPS, ROAD
TESTING

```
THIS TEST PLAN DESCRIBES A TEST OF THE FIELD
```

THIS TEST PLAN DESCRIBES A TEST OF THE FIELD
MAINTENANCE ELECTRICAL SHOP AND THE REPAIR
MAINTENANCE ELECTRICAL SHOP AND THE REPAIR
PARTS SHOP OF THE PERSHING WEAPON SYSTEM TO
PARTS SHOP OF THE PERSHING WEAPON SYSTEM TO
SIMULATE CONDITIONS THAT ARE EXPECTED DURING TACTICAL
SIMULATE CONDITIONS THAT ARE EXPECTED DURING TACTICAL
AND LOGISTIC TRANSPORTATION. THE TEST WILL BE
AND LOGISTIC TRANSPORTATION. THE TEST WILL BE
CONDUCTED AT REDSTONE ARSENAL BY TEST AND
CONDUCTED AT REDSTONE ARSENAL BY TEST AND
EVALUATION LABORATORY, DIRECTORATE OF
EVALUATION LABORATORY, DIRECTORATE OF
RESEARCH AND DEVELOPMENT, U, S. ARMY MISSILE
RESEARCH AND DEVELOPMENT, U, S. ARMY MISSILE
COMMAND, REDSTONE ARSENAL, ALABAMA,
COMMAND, REDSTONE ARSENAL, ALABAMA,
(AUTHOR)

```
(AUTHOR)
```

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492

```
AD-472 751
    ARMY BALLISTIC MISSILE AGENCY REDSTONE ARSENAL ALA
    PRELIMINARY EVALUATION OF PERSHING 1OS FLIGHT TEST,
        APR 60 58P FULMER,C, R, ILINDBERG,J, P.
    ;
REPT. NO. ABMA=DA-TM-28-60
            UNGLASSIFIED REPORT
    NO PUBLIC OR FOREIGN RELEASE.
DESCRIPTORS: (*UIDED MISSILES(SURFACE-TO-SURFACE),
    FLIGHT TESTING), PERFORMANCE(ENGINEERING),
    BOOSTER MOTORS, ROCKET MOTORS(SOLID PROPELLLANT),
    FLIGHT CONTROL SYSTEMS, ACCELEROMETERS, STABILITY,
    RANGES(DISTANCE), SPECIFIC IMPULSE, VELOCITY,
    TEMPERATURE, GUIDED MISSILE TRAJECTORIES, WEIGHT,
    HYDRAULIC SYSTEMS, VIBRATION, EXPERIMENTAL DATA
IDENTIFIERS: PERSHING
```

MISSILE P-10S WAS THE FIRST PERSHING MISSILE TO

```
MISSILE P-10S WAS THE FIRST PERSHING MISSILE TO
BE FLIGHT TESTED, IT WAS LAUNCHED AT THE AMR ON
BE FLIGHT TESTED, IT WAS LAUNCHED AT THE AMR ON
25 FEBRUARY 1960 AT 1301 EST. THE FIRST STAGE
25 FEBRUARY 1960 AT 1301 EST. THE FIRST STAGE
SOLID PROPELLANT A MOTOR PERFORMED VERY CLOSELY TO
SOLID PROPELLANT A MOTOR PERFORMED VERY CLOSELY TO
THE PREDICTIONS. THE POWER FLIGHT CONTROL,
THE PREDICTIONS. THE POWER FLIGHT CONTROL,
INCLUDING BODY FIXED ACCELEROMETER CONTROL, WAS
INCLUDING BODY FIXED ACCELEROMETER CONTROL, WAS
ENTIRELY SATISFACTORY, THE COAST PHASE UNTIL IOO
ENTIRELY SATISFACTORY, THE COAST PHASE UNTIL IOO
SECONDS FLIGHT TIME WAS NOT SUCCESSFULLY CONTROLLED.
SECONDS FLIGHT TIME WAS NOT SUCCESSFULLY CONTROLLED.
THE MISSILE WENT OUT OF CONTROL IN ALL THREE PLANES
THE MISSILE WENT OUT OF CONTROL IN ALL THREE PLANES
AT APPROXIMATELY I3 SECONDS AFTER BURNOUT.
AT APPROXIMATELY I3 SECONDS AFTER BURNOUT.
ANALYSIS OF THE FLIGHT DATA INDICATED A STABILITY
ANALYSIS OF THE FLIGHT DATA INDICATED A STABILITY
RATIO C1/C2 OF -6.93 COMPARED TO A PREDICTED
RATIO C1/C2 OF -6.93 COMPARED TO A PREDICTED
RATIO OF -4.OS AT THE TIME OF LOSS OF CONTROL. DUE
RATIO OF -4.OS AT THE TIME OF LOSS OF CONTROL. DUE
TO THE DISTURBED SPATIAL FLIGHT THE MISSILE IMPAGTED
TO THE DISTURBED SPATIAL FLIGHT THE MISSILE IMPAGTED
AT A RANGE OF 16.9 MM COMPARED TO THE PREDICTED 3OMM.
AT A RANGE OF 16.9 MM COMPARED TO THE PREDICTED 3OMM.
(AUTHOR)
```

(AUTHOR)

```
```

AD-472 749
ARMY BALLISTIC MISSILE AGENCY REDSTONE ARSENAL ALA
PERSHING QUALITY REPORT NUMBER 1O FOR MARCH 196O,
JUN 6O 97P MANNING,ELIZABETH G. :
REPT.NO. ABMA-DRR-TM-23-60
UNCLASSIFIED REPORT
NO PUBLIC OR FOREIGN RELEASE.
DESCRIPTORS: (*GUIDED MISSILES(SURFACE-TO-SURFACE),
QUALITY CONTROL), MANAGEMENT ENGINEERING,
ELECTRONIC EQUIPMENT, MANUFACTURING METHODS,
INSTALLATION, VISUAL INSPECTION, GROUND SUPPORT
EQUIPMENT, TRANSPORTATION, GUIDED MISSILE
COMPONENTS, TACTICAL WEAPONS, MOBILE, ARMY,
PROCESSING
IDENTIFIERS: PERSHING (U)
THE PURPOSE OF THIS REPORT IS TO PRESENT MANAGEMENT
WITH A GENERAL PICTURE OF THE OVERALL QUALITY OF THE
PWS AS REFLECTED FROM INSPECTION AND TEST RESULTS.
(AUTHOR)

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
AD-472 747
    ARMY BALLISTIC MISSILE AGENCY REDSTONE ARSENAL ALA
    PERSHING MISSILE SYSTEM PREFLIGHT CERTIFICATION TEST
    RESULTS LEV=3 MOD, II AUTO-PILOT (ADDENDUM), (U)
        AUG 60 4P LIDE,WILTON C, ;
REPT, NO, ABMA-DG-TM-6-60-ADD.
            UNCLASSIFIED REPORT
    NO PUBLIG OR FOREIGN RELEASE,
SUPPLEMENTARY NOTE: ADDENDUM TO REPT, NO, ABMA=DG=TM=
    6-60 DATED 15 FEB 60, AD-472 746.
DESCRIPTORS: (*GUIDED MISSILES(SURFACE-TO-SURFACE),
    FLIGHT TESTING), AUTOMATIC PILOTS, HIGH-
    TEMPERATURE RESEARCH, MOBILE, GYROSCOPES,
    ACCELEROMETERS, LOW-TEMPERATURE RESEARCH,
    VIBRATION, SHOCK(MECHANICS)
    (U)
IDENTIFIERS: PERSHING (U)
    PERSHING MISSILE SYSTEM PREFLIGHT CERTIFICATION TEST
    RESULTS.
```

```
AD-472 745
    ARMY BALLISTIC MISSILE AGENCY REDSTONE ARSENAL ALA
    OPERATIONAL CAPABILITIES AND COMPONENT EVALUATION OF
    THE PERSHING MISSILE SYSTEM TRANSPORTEROERECTOR-
    LAUNCHER, MISSILE LIFT TRAILERS, AND XM-474 TRACKED
    VEHICLE,
        SEP 6O 23P JOHNSON,ARTHUR G. :
REPT. NO. ABMA-RS-TM-2-60
    UNCLASSIFIED REPORT
    NO PUBLIC OR FOREIGN RELEASE,
DESCRIPTORS: (*TRANSPORTER-ERECTORS, GUIDED
    MISSILES(SURFACE-TO-SURFACE)), (*TRAILERS, GUIDED
    MISSILES(SURFACE-TO-SURFACE)), (*TRACKEDVEHICLES,
    GUIDED MISSILES(SURFACE-TO-SURFACE)),GROUND
    SUPPORT EQUIPMENT, OPERATION, RELIABILITY,
    HANDLING, JACKS(MECHANICS), DESIGN,
    COMPATIBILITY, EFFECTIVENEESS, CHECKOUT
    PROCEDURES, ALIGNMENT, DEPLOYMENT
        (U)
IDENTIFIERS: PERSHING, M-474 VEHICLES (U)
```


DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492

```
AD-468 425
    ALABAMA UNIV UNIVERSITY BUREAU OF ENGINEERING
    RESEARCH
    A THEORETICAL STUDY TO IMPROVE UTILIZATION OF MISSILE
    TELEMETRY SYSTEMS.
(U)
DESCRIPTIVE NOTE: FINAL REPT,, 11 APR 62-10 JAN 63,
        FEB 63 48P SIMPSON,RICHARD S. ;BURNETT,
    J. REESE ;
CONTRACT: DAO1 OOQORD\O41
```


UNCLASSIFIED REPORT

SUPPLEMENTARY NOTE:
DESCRIPTORS: (*TELEMETER SYSTEMS, GUIDED
MISSILES), BANDWIDTH, TELEMETERING DATA, CLASSIFICATION, VIBRATION, PULSE COMPRESSION, DATA, ANALYSIS, FREQUENCY
(U)

IDENTIFIERS: PERSHING (U)

DATA BANDWIDTH COMPRESSION OF SLOWLY VARYING
MEASUREMENTS CAN BE ACCOMPLISHED USING RATHER
STRAIGHTFORWARD TECHNIQUES, THE EXTENSION OF THE CONCEPT OF DATA COMPRESSION TO VIBRATION MEASUREMENTS
APPEARS TO BE A NATURAL STEP, HOWEVER, CONSIDERABLE DIFFICULTY IS ENCOUNTERED WHEN THIS STEP IS ATTEMPTED BY USE OF SYSTEMS OTHER THAN SIMPLE BAND-TYPE ANALYZERS, THE MAJOR DIFFICULTY IS THAT OF EXTRACTING INFORMATION FROM THE RAW DATA WHICH WILL GIVE THE POWER DENSITY SPECTRUM. THIS IS AN IMPORTANT FACET OF THE PROCESS BECAUSE THE MAJOR PORTION OF THE POSSIBLE DATA COMPRESSION IS CONCENTRATED IN THIS STEP, IN THIS WORK THE BANDTYPE ANALYZER AND THE COHERENT MEMORY-FILTER ANALYZER (CMF) HAVE BEEN CONSIDERED AS POSSIBLE TECHNIQUES FOR ACCOMPLISHING THE TASK, ONLY THE BAND-TYPE ANALYZER APPEARS TO BE FEASIBLE UNDER THE STRICT HARDWARE LIMITATIONS IMPOSED ON NON-TACTICAL SYSTEMS. ONCE THE PROBLEM OF OBTAINING THE POWER DENSITY SPECTRUM HAS BEEN SOLVED, ADAPTIVE DATA COMPRESSION 15 POSSIBLE. THOUGH THE CONTRIBUTION TO TOTAL COMPRESSION IS LESS THAN THAT REALIZED IN OBTAINING THE POWER DENSITY SPECTRUM, SIGNIFICANT COMPRESSION IS GAINED. HARDWARE REQUIREMENTS RENDER THIS COMPRESSION COSTLY, HOWEVER, IDENTIFICATION AND BUFFERING PROBLEMS GENERALLY IMPLY THE USE OF A DIGITAL SYSTEM. FINALLY, IT IS APPARENT THAT THE ONLY FEASIBLE DATA BANDWIDTH COMPRESSION SYSTEM IS ONE USING BAND-TYPE ANALYZERS OPERATING IN THE SIMPLE MODE, (AUTHOR)

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492

```
AD=468 201L
    SOUTHWEST RESEARCH INST SAN ANTONIO TEX DEPT OF AUTOMOTIVE
    RESEARCH
    A STUDY OF THE EFFECTS OF DUST ON THE PERSHING
    MISSILE GROUND SUPPORT TURBINE ENGINE.
        (U)
DESCRIPTIVE NOTE: SUPPL, A TO FINAL TECHNICAL REPT,,
        DEC 62 43P MERIWETHER,ROSS F. ;
REPT, NO, AR=4B9
CONTRACT: DA44 OO9ENG4770
PROJ: 8M49 11 OO1 O2A,SWRI PROJ. 1075-11
    UNCLASSIFIED REPORT
    NOTICE: RELEASE ONLY TO U, S, GOVERNMENT AGENCIES
    IS AUTHORIZED, OTHER CERTIFIED REQUESTERS SHALL OBTAIN
    RELEASE APPROVAL FROM COMMANDING OFFICER, ARMY
    ENGINEER RESEARCH AND DEVELOPMENT LABS., FORT
    BELVOIR.VA.
SUPPLEMENTARY NOTE: SUPPLEMENT A TO REPORT DATED 3O
    MAR 62, AD-468 197.
```

DESCRIPTORS: (*DUST, GUIDED MISSILESISURFACE-TO-
SURFACE) , (*GAS TURBINES, DUST), GROUND SUPPORT
EQUIPMENT, TESTS, PERFRMANCE (ENGINEERING), LIFE
EXPECTANCY, DAMAGE, EROSION, DATA, TITANIUM,
ALUMINUM
(U)
IDENTIFIERS: PERSHING (U)
THE FOLLOWING CONCLUSIONS CAN BE DRAWN FROM THE
RESULTS OF THIS SECOND TURBINE DUST TEST: (1)
EVEN WITH THE USE OF HIGHER QUALITY MATERIALS IN THE
TURBINE SECTION, THE PERSHING MISSILE SUPPORT
TURBINE ENGINE IS STILL VERY SUSCEPTIBLE TO DAMAGE BY
DUST EROSION FROM VERY CONSERVATIVE DUST ATMOSPHERES.
(2) THE TURBINE SEGTION IS STILL THE MOST
VUL゙NERABLE PART OF THE TURBINE. (3) THE USE OF
TITANIUM IN SOME OF THE COMPRESSOR COMPONENTS IIST
STAGE INDUCERS, 1 ST STAGE COMPRESSOR SHROUD, ZND
STAGE COMPRESSOR WHEEL, APPEARS TO ASSIST THE
ABILITY OF THAT COMPONENT TO RESIST EROSION.
HOWEVER, THERE IS NO DIRECT COMPARISON OF ALUMINUM
AND TITANIUM AVAILABLE, SO THE RESULTS OF THIS TEST
CAN ONLY BE SUGGESTIVE OF THIS CONGLUSION, (4)
FURTHER EVIDENCE OF THE SUPERIORITY OF BACKWARD
SWEPT COMPRESSOR VANES IN RESISTING EROSION WAS
OBTAINED, PARTICULARLY ON THE IST STAGE COMPRESSOR
WHERE LITTLE EROSION OF THE ALUMINUM IMPELLER
OCCURRED, ON AN EARLIER TURBINE TEST PROGRAM,
STRAIGHT VANED ALUMINUM IMPELLERS WERE FOUND TO BE
HIGHLY VULNERABLE TO DUST EROSION. (AUTHOR)

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
AD-462 249
    ARMY ENGINEER RESEARCH AND DEVELOPMENT LABS FORT BELVOIR
    VA
    THE 10-KW, 40O-CYCLE, GASOLINE ENGINE DRIVEN
    GENERATOR SET USED IN THE RADIO TERMINAL (AN/TRC-8O)
    FOR THE PERSHING MISSILE SYSTEM.
        (U)
DESCRIPTIVE NOTE: ENGINEERING EVALUATION REPT, IO MAR
    61-11 JAN 62.
        MAR 65 B4P BELT,RICHARD N.;
REPT, NO. AERDL-1801
PROJ: DA-8M18-13-001
    UNCLASSIFIED REPORT
    NOFORN
```

```
DESCRIPTORS: (*GENERATORS, PERFORMANCE (ENGINEERING)),
```

DESCRIPTORS: (*GENERATORS, PERFORMANCE (ENGINEERING)),
(*RADIO COMMUNICATION SYSTEMS, POWER SUPPLIESI, INTERNAL
(*RADIO COMMUNICATION SYSTEMS, POWER SUPPLIESI, INTERNAL
COMBUSTION ENGINES, GASOLINE, GROUND SUPPORT EQUIPMENT,
COMBUSTION ENGINES, GASOLINE, GROUND SUPPORT EQUIPMENT,
GUIDED MISSILES (SURFACE-TO-SURFACE), MOBILE, ARMY (U)
GUIDED MISSILES (SURFACE-TO-SURFACE), MOBILE, ARMY (U)
IDENTIFIERS: PERSHING, AN/TRC-80 (U)
IDENTIFIERS: PERSHING, AN/TRC-80 (U)
THE REPORT COVERS THE DEVELOPMENT, ENGINEERING
THE REPORT COVERS THE DEVELOPMENT, ENGINEERING
DESIGN TEST RESULTS, AND EVALUATION OF THE 1O-KW,
DESIGN TEST RESULTS, AND EVALUATION OF THE 1O-KW,
4OO-CYCLE, GASOLINE-ENGINE-DRIVEN GENERATOR SET USED
4OO-CYCLE, GASOLINE-ENGINE-DRIVEN GENERATOR SET USED
IN THE RADIO TERMINAL (AN/TRC-8O) WITH THE
IN THE RADIO TERMINAL (AN/TRC-8O) WITH THE
PERSHING MISSILE SYSTEM. THE REPORT
PERSHING MISSILE SYSTEM. THE REPORT
CONCLUDES THAT THE GENERATOR SET MEETS THE TECHNICAL
CONCLUDES THAT THE GENERATOR SET MEETS THE TECHNICAL
OBJECTIVES AND ELECTRICAL POWER REQUIREMENTS OF THE
OBJECTIVES AND ELECTRICAL POWER REQUIREMENTS OF THE
AN/TRC-80. (AUTHOR)

```
AN/TRC-80. (AUTHOR)
```

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492

```
AD=460 606L
    SOUTHWEST RESEARCH INST SAN ANTONIO TEX DEPT OF AUTOMOTIVE
    RESEARCH
    DEVELOPMENT OF A PROTOTYPE SELF-CLEANING FILTER FOR
    THE PERSHING MISSILE POWER STATION GAS TURBINE.
    PHASE I.
DESCRIPTIVE NOTE: TECHNICAL REPT, ,
        NOV 64 M P P RIWETHER,ROSS F. :
REPT, NO. \(A R=548\)
CONTRACT: DA44 009ENGS245
PROJ: 111240
UNCLASSIFIED REPORT
    NOTICE: RELEASE ONLY TO U, \(S\), GOVERNMENTAGENCIES
    IS AUTHORIZED, OTHER CERTIFIEDREQUESTERS SHALL OBTAIN
    RELEASE APPROVAL FROMARMY ENGINEER RESEARCH AND
    DEVELOPMENT LAB., FORTBELVOIR, VA, 2206O,
SUPPLEMENTARY NOTE:
DESCRIPTORS: (*LUNCHING SITES, POWER SUPPLIES), (*POWER
    SUPPLIES, GAS TURBINES), (*GAS TUREINES, FILTERS
    (FLUID)), (*FILTERS (FLUID), AIR), DESIGN, FEASIBILITY
    STUDIES, CLEANING, DUST, AUTOMATIC, MECHANICAL DRAWINGS,
    EFFECTIVENESS, FLUID FLOW, PRESSURE, REDUCTION, LIFE
    EXPECTANCY, VELOCITY, TEST METHOOS, PAPER, IMPREGNATION,
    PHENOLIC PLASTICS, CATION TEXTILES, BONDING, NYLON,
    THERMOSETTING PLASTICS, CELLULOSE, GLASS TEXTILES,
    GUIDED MISSILES (SURFACE-TO-SURFACE) (U)
IDENTIFIERS: PERSHING
THE SUSCEPTIBILITY OF GAS TURBINE ENGINES TO THE
INGESTION OF EVEN LIGHT CONCENTRATIONS OF AIRBORNE
DUST WAS DEMONSTRATED BY A SERIES OF RECENT TESTS AT
SOUTHWEST RESEARCH INSTITUTE, THESE TESTS
REVEALED THE NEED FOR AN AIR FILTER FOR THE
PERSHING SUPPORT TURBINE, AND LOGISTIC
CONSIDERATIONS DICTATED THAT THE AIR FILTER BE
SELFCLEANING. THIS FIRST PHASE OF THE PROGRAM TO
DEVELOP A SELF-CLEANING AIR FILTER SYSTEM WAS DEVOTED
TO EVALUATING COMMERCIALLY AVAILABLE FILTER MEDIA TO
FIND AT LEAST ONE MEDIUM WHICH WOULD MEET THE
PERFORMANCE REQUIREMENTS OF THIS PARTICULAR
APPLICATION, THIS REPORT COVERS THE RESULTS OF
THAT SEARCH FOR AN ACCEPTABLE FILTER MEDIUM,
(AUTHOR)
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO.OZ1492
 AD=457 935
AUBURN UNIV ALA DEPT OF MECHANICAL ENGINEERING
METHODS FOR COMPUTING THERMAL CONDUCTIVITY, THERMAL
DIFFUSIVITY, AND SPECIFIC HEAT, (U)
DESCRIPTIVE NOTE: PROGRESS REPT, NO, 9, MAR-JUN 64,
JUL 64 48P TANGER,G.E. ;
CONTRACT: DAOI OO9ORDIO23
UNCLASSIFIED REPORT
AVAILABILITY: FOR REFERENCE ONLY AT EACH OF THE DDC
OFFICES, THIS REPORT CANNOT BE SATISFACTORILY
REPRODUCED: DDC DOES NOT FURNISH COPIES.
SUPPLEMENTARY NOTE:

```

```

THE STUDY OF THERMAL PROPERTY DETERMINATION HAS
CONTINUED. THE PROPERTIES INVESTIGATED INCLUDE
THERMAL DIFFUSIVITY, THERMAL CONDUCTIVITY, AND
SPECIFIC HEAT. THE METHODS DEVELOPED WILL BE USED
PRIMARILY TO DETERMINE AGCURATE THERMAL PROPERTIES
FOR THE PERSHING MISSILE SYSTEM AND FOR OTHER
PROPELLANTS OF CURRENT INTEREST, THE METHOD FOR
DETERMINING THERMAL DIFFUSIVITY REPORTED IN THE LAST
PROGRESS REPORT HAS BEEN REFINED, AND NEW TESTS ARE
REPORTED TO POINT OUT THE IMPROVEMENTS IN ACCURACY
THAT HAVE BEEN OBTAINED, LIMITATIONS OF THE
EXPERIMENT ARE DISCUSSED IN THE REPORT, SEVERAL
IMPROVEMENTS HAVE BEEN MADE IN THE LINE=SOURCE METHOD
FOR DETERMINING THERMAL CONDUCTIVITY, THE
IMPROVEMENTS ARE DESIGNED TO MAKE THE METHOD
COMPETITIVE WITH THE GUARDED HOT-PLATE METHOD.
TEST RESULTS ON LIVE SARGEANT AND ALUMINUM STAPLE
PROPELLANT ARE REPORTED, (AUTHOR)

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492

```
AD=457 930
    AUBURN UNIV ALA DEPT OF MECHANICAL ENGINEERING
    FURTHER STUDY OF WEATHER EFFECTS ON THE PERSHING
    MOTOR.
    (u)
DESCRIPTIVE NOTE: PROGRESS REPT, NO, 3, AUG=OCT 62,
        DEC 62 27P TANGER,G, E. ;NIX,G, H. :
CONTRACT: DAO1 OOQORDIO23
    UNCLASSIFIED REPORT
    NOFORN
SUPPLEMENTARY NOTE:
DESCRIPTORS: (*PROPELLANT GRAINS, HEAT TRANSFER),
    THERMAL DIFFUSION, WIND, TEMPERATURE, METEOROLOGICAL
    PARAMETERS, ROCKET MOTORS (SOLID PROPELLANT), UNITED
    STATES, CANADA, DIFFERENCE EQUATIONS, NUMERICAL
    ANALYSIS, MATHEMATICAL PREDICTION, HEATING ELEMENTS,
    BLANKETS
        (U)
IDENTIFIERS: PERSHING (U)
```

AN ATTEMPT HAS BEEN MADE TO PREDICT THE TEMPERATURE GRADIENTS THAT OCCUR IN A CYLINDRICAL ROCKET GRAIN UNDER CONDITIONS OF CHANGING AMBIENT TEMPERATURE AND WIND VELOCITY. THE GRAIN WAS ASSUMED TO BE PROTECTED BY AN ELECTRIC BLANKET AND COMPUTER RESULTS ARE PRESENTED FOR VARYING CONDITIONS OF TEMPERATURE AND WIND VELOCITY FROM STATIONS IN THE CONTINENTAL UNITED STATES AND CANADA, WEATHER DATA WERE OBTAINED FROM THE AIR
CLIMATIC CENTER, USAF, WASHINGTON, D, C, AND RUNS WERE MADE FOR STATIONS WHERE LOW TEMPERATURES AND HIGH WIND VELOCITIES OCCURRED, CALCULATIONS WERE MADE FOR STATIONS THAT MIGHT PROVIDE GRADIENTS THROUGH THE MOTOR. THE COMPUTER PROGRAM IS ARRANGED SUCH THAT THE BLANKET MAY BE INCLUDED AS A HEAT SOURCE AND RESULTS ARE PRESENTED FOR AN ASSUMED POWER FAILURE OF THE BLANKET, RESULTS FROM THE COMPUTER PROGRAM ARE COMPARED WITH THEORETICAL RESULTS FOR TRANSIENT, ONE-DIMENSIONAL HEAT CONDUCTION THROUGH A SLAB, A SOLID CYLINDER AND A HOLLOW CYLINDER. AN EFFORT HAS BEEN MADE TO generalize the results that have been obtained. (AUTHOR)

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
AD=457 890
    AUBURN UNIV ALA DEPT OF MECHANICAL ENGINEERING
    FORCED CONVECTION AND THERMAL PROPERTIES
    INVESTIGATION PERTAINING TO THE PERSHING ROCKET
    MOTOR.
DESCRIPTIVE NOTE: PROGRESS REPT, NO, 6, MAY-JUL 63,
        AUG 63 33P TATOM,F, B. INIX,G,H. !
    CARPENTER,A, D, ;
CONTRACT: DAO1 OO9ORD1O23
            UNCLASSIFIED REPORT
        NOFORN
SUPPLEMENTARY NOTE:
DESCRIPTORS: (*PROPELLANT GRAINS, THERMAL PROPERTIES),
    THERMAL CONDUCTIVITY, SILICONE PLASTICS, STYRENE
    PLASTICS, HEAT TRANSFER, FLUID FLOW, MEASUREMENT, TEST
    METHODS, TEST EQUIPMENT (U)
IDENTIFIERS: PERSHING (U)
IN THE REPORT, PRELIMINARY RESULTS ON THERMAL
CONDUCTIVITY OF INERT PERSHING PROPELLANT ARE
REPORTED, ALSO PRESENTED IS A COMPARISON OF
RESULTS FOR POLYSTYRENE PLASTIG AND SILICONE RUBBER.
A DISCUSSION OF THE PROCEDURE USED IN CASTING THE
SAMPLES CHECKED BY THE NATIONAL BUREAU OF
STANDARDS IS PRESENTED ALONG WITH A LISTING OF
THEIR RESULTS, AN EXPLANATION OF THE COMPLETE
APPARATUS NECESSARY FOR THE FORCED CONVECTION
INVESTIGATION IS PRESENTED ALONG WITH A DISCUSSION OF
THE CAPABILITIES OF CONDUCTING TESTS WITH PRESENT
EQUIPMENT, PRELIMINARY RESULTS ARE PROVIDED FOR
NATURAL AND FORCED CONVECTION WITH UNCONTROLLED FREE-
STREAM TURBULENCE. ADDITIONAL DATA FROM LITERATURE
ARE ALSO PRESENTED, (AUTHOR)
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
 AD=451960
PITTSBURGH UNIV PA
DEVELOPMENT OF MISSILE EQUIPMENT CARRIER, XM474
SERIES.
SEP 61 6P
CONTRACT: DA36 034AMC3785X
MONITOR: AMC TIR\2 5 \& A!
UNCLASSIFIED REPORT
NOFORN
SUPPLEMENTARY NOTE:
DESCRIPTORS: (*TRACKED VEHICLES, SPECIFICATIONS),
TRANSPORTER-ERECTORS
IDENTIFIERS: M-474 VEHICLES, PERSHING (U)
DEVELOPMENT OF MISSILE EQUIPMENT CARRIER, XM474 SERIES,

```

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492
```

AD=440 886
LOCKHEED MISSILES AND SPACE CO SUNNYVALE CALIF
AERODYNAMIC CHARACTERISTICS OF BODIES OF REVOLUTION
WITHOUT FINS: AN ANNOTATED BIBLIOGRAPHY,
213P EVANS,GEORGE R. :
REPT, NO, 8 4 63 13,SB63 75
CONTRACT: NOWG3 0O5OC
UNCLASSIFIED REPORT
NOFORN
SUPPLEMENTARY NOTE:
DESCRIPTORS: (*BIBLIOGRAPHIES, BODIES OF REVOLUTION),
(*BODIES OF REVOLUTION, BIBLIOGRAPHIES), AERODYNAMIC
CHARACTERISTICS, SUPERSONIC CHARACTERISTIC, HYPERSONIC
CHARACTERISTIC, CONICAL BODIES, BLUNT BODIES,
CYLINDRICAL BODIES, SPIKES, SLENDER BODIES, GUIDED
MISSILES, NOSE CONES, OGIVES, REENTRY VEHICLES, SPACE
CAPSULES, STABILITY, DRAG, PRESSURE, FORCE, FLARED
AFTERBODIES
IDENTIFIERS: MINUTEMAN, POLARIS, APOLLO, PERSHING,
SATURN, SKYBOLT, MERCURY, TITAN

THE BODIES OF REVOLUTION MAY BE OF ANY CONFIGURATION, THE REFERENCES ARE LISTED BY PERSONAL AUTHR OR, IN THE ABSENCE OF ONE, LISTING IS BY TITLE, THE FIRST FIFTEEN REFERENCES ARE
LISTINGS OF BIBLIOGRAPHIES, HANDBOOKS, AND LITERATURE
SURVEYS OF AERODYNAMICS IN GENERAL. SOURCE/
AGENCY AND SUBJECT INDEXES ARE INCLUDED, THE
SUBJECT INDEX IS DIVIDED INTO THREE SECTIONS, THE
FIRST SECTION LISTS BODIES OF REVOLUTION WITH
ARBITRARY CONFIGURATION, THE SECOND SECTION LISTS
SPECIFIC TYPES OF CONFIGURATIONS SUCH AS CONES.
CYLINDERS, AND BLUNT BODIES, THE THIRD SECTION
LISTS SPECIFIC VEHICLES, EG., POLARIS, TITAN,
AND MINUTEMAN, THE SPECIFIC AERODYNAMIC
CHARACTERISTICS ARE: STATIC STABILITY, DRAG (AXIAL
FORCE, PRESSURE DISTRIBUTION, AND FORCE
DISTRIBUTION. THE MACH FLOW IS FROM O TO
INFINITY, THE PERIOD COVERED IS JANUARY 1960
THROUGH JUNE 1963 . THERE ARE 463 REFERENCES.
(AUTHOR)

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492

```
AD-440 327L
```

 ARMY ENGINEER RESEARCH AND DEVELOPMENT LABS FORT BELVOIR
 VA
 ENGINEERING EVALUATION REPORT ON THE TRAILERMOUNTED
 POWER STATION (FORMERLY POWER STATION EQUIVALENT) FOR
 THE PERSHING WEAPON SYSTEM,
 DESCRIPTIVE NOTE: TECHNICAL REPT,
MAR 64 W8P WILLIAMS,ROBERT A. ICOOPER,
T. D. i
REPT, NO. AERDL-1770
PROJ: 8M18 13001
UNCLASSIFIED REPORT
NOTICE: RELEASE ONLY TO U. S, GOVERNMENTAGENCIES
IS AUTHORIZED, OTHER CERTIFIED REQUEST-ERS SHALL OBTAIN
RELEASE APPROVAL FROM ARMYENGINEER RESEARCH AND
DEVELOPMENT LABS, FORTBELVOIR, VA,
DESCRIPTORS: (MAINTENANCE VEHICLES, GROUND SUPPORT
EQUIPMENT), (*GROUND SUPPORT EQUIPMENT, MAINTENANCE
VEHICLES), MOTOR GENERATORS, POWER SUPPLIES, TRAILERS,
ELECTRICAL EQUIPMENT, CONTROL PANELS, DISTRIBUTION,
PNEUMATIC SYSTEMS, AIR CONDITIONING EQUIPMENT, TEST
METHODS, HIGH PRESSURE COMPRESSORS, DIRECT CURRENT,
MAINTENANCE EQUIPMENT, MAINTENANCE, PORTABLE (MAN -
PORTABLE), GUIDED MISSILES (SURFACE-TOSURFACE), MOBILE,
ARMY (U)
IDENTIFIERS: PERSHING (U)

```
THIS REPORT COVERS THE ENGINEERING DESIGN TESTING
AND EVALUATION OF THE TRAILER-MOUNTED POWER STATION
DEVELOPED BY THE MARTIN COMPANY FOR USE IN THE
PERSHING WEAPON SYSTEM. THE REPORT CONCLUDES
THAT THE POWER STATION WILL MEET THE APPLICABLE
SPECIFICATIONS AND WILL BE SUITABLE FOR USE IN THE
PERSHING WEAPON SYSTEM AFTER CERTAIN
DEFICIENCIES HAVE BEEN CORRECTED, (AUTHOR) (U)
```

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
AD-434 892
    ARDE-PORTLAND INC NEWARK N J
    CRYOGENIC STRETCH-FORMING OF SOLID-PROPELLANT ROCKET
    CASES. (U)
DESCRIPTIVE NOTE: QUARTERLY REPT, NO, 7, 1 DEC 63-28
    FEB 64
            FEB 64 16P ALPER,R, H. ;
CONTRACT: DA30 069ORD3501
UNCLASSIFIED REPORT
SUPPLEMENTARY NOTE:
DESCRIPTORS: (*ROCKET CASES, STRETCH FORMING), (*ROCKET
    MOTOR NOZZLES, RINGSI, MANUFACTURING METHODS,
    CRYOGENICS, EFFECTIVENNESS, PROCESSING, GUIDED MISSILES
    (SURFACE-TOSURFACE), ROCKET MOTORS (SOLID PROPELLANT)(U)
IDENTIFIERS: 1964, PERSHING (U)
    THE OBJECTIVE OF THE PROGRAM IS TO PRODUCE
    EXPERIMENTAL, FLIGHT-WEIGHT ROCKET MOTOR CASES OF A
    CONFIGURATION SIMILAR TO PERSHING, BY THE CRYOGENIC
    STRETCH-FORMING PROCESS, PREVIOUS WORK
    DEMONSTRATED THE FEASIBILITY OF PRODUCING HIGH=
    STRENGTH ROCKET CASES BY CRYOGENCI STRETCHFORMING,
    THE PRESENT FOLLOW-ON PROGRAM IS BEING UNDERTAKEN
    TO EVALUATE THE PROCESS FOR PRODUCING A SPECIFIC,
    PREDETERMINED, COMPLEX-CONFIGURATION MOTOR CASE AT
    THE STRENGTH LEVEL PREVIOUSLY ACHIEVED (240,000 PSI
    NOMINAL YIELD STRESSI, DETAILS OF THIS
    CONFIGURATION INCLUDE SKIRTS, FORWARD IGNITER PORT,
    CONICAL AFT CLOSURE, AND NOZZLE ATTACHMENT RING.
    (AUTHOR)
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, OZ1492
 AD=433 809
CURTISS-WRIGHT CORP WOOD-RIDGE N J WRIGHT AERONAUTICAL
DIV
DESIGN, DEVELOPMENT AND FABRICATION OF ULTRA-HIGH
STRENGTH SOLID PROPELLANT ROCKET MOTOR CASES.(U)
DESCRIPTIVE NOTE: QUARTERLY PROGRESS REPT, NO, 3, 2O NOV
630 FEB 64,
FEB 64 403P CRANE,V. GGILEWICZ,E, P.
;
REPT, NO, 407 3
CONTRACT: AFO4 61119064
UNCLASSIFIED REPORT
SUPPLEMENTARY NOTE:
DESCRIPTORS: (*ROCKET CASES, DESIGN), (*ROCKET MOTORS
(SOLID PROPELLANT), ROCKET CASES), NICKEL ALLOYS, STEEL,
AGING (MATERIALS), HEAT TREATMENT, MARTENSITE,
METALLURGY, OPTIMIZATION, SPECIFICATION, GUIDED MISSILES
(SURFACETO-SURFACE), HYDROSTATIC PRESSURE, FILAMENT
WOUND CONSTRUCTION, WIRE, INSTRUMENTATION, TEST METHODS,
MECHANICAL PROPERTIES, VISUAL INSPECTION, FORGING,
PRODUCTION, FAILURE (MECHANICS), LOADING (MECHANICS) (U)
IDENTIFIERS: 1964, PERSHING, MINUTEMAN (U)

```

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
```

AD-428 863
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
RELIABILITY EVALUATION LAB
TRANSPORTATION-VIBRATION TEST OF PERSHING MISSILE
SYSTEM TACTICAL SHIPPING AND STORAGE CONTAINERS -
PHASE II.
DESCRIPTIVE NOTE: FINAL REPT,,
DEC 63 4SP EYESTONE,RONALD G. ;
REPT, NO, RT-TR-63-8
PROJ: DA-516-05-011

```
        UNCLASSIFIED REPORT
SUPPLEMENTARY NOTE:
DESCRIPTORS: (*ROCKET MOTORS (SOLID PROFELLANT).
    CONTAINERS), (CONTAINERS, TRANSPORTATION), VIBRATION,
    STORAGE, TESTS, TRAILERS, TEST METHODS, TEST FACILITES,
    FAILURE (MECHANICS), DAMAGE, CARGO VEHICLES, BOOSTER
    MOTOR, SECOND STAGE MOTORS, GUIDED MISSILES ISURFACE-TO-
    SURFACE)
        (U)
IDENTIFIERS: 1964, PERSHING (U)
TACTICAL FIRST- AND SECOND-STAGE SHIPPING AND
STORAGE CONTAINERS FOR THE PERSHING MISSILE
SYSTEM, WITH DUMMY LOADS, WERE SUBJECTED TO THE
MAXIMUM VIBRATION CONDITIONS WHICH THEY MAY
EXPERIENCE DURING TRUCK TRANSPORTATION, THE TEST
WAS PERFORMED BY TRANSPORTING THE CONTAINERS, TRUCK
MOUNTED, OVER A ROUGH ROAD COURSE WHILE VARYING THE
SPEED TO OBTAIN DESIRED G LEVELS. (AUTHOR) (U)

DDG REPORT EIBLIOGRAPHY SEARCH CONTROL NO, 021492
```

AD=426 364
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA ARMY INERTIAL
GUIDANCE AND CONTROL LAB AND CENTER
ANALYSIS AND DESIGN OF A SIMPLIFIED INTERTIAL
PLATFORM ALIGNMENT LOOP,
HOP DOOLEY, JERRY L, :MCCARLEY,
HERBERT R. ;
REPT, NO, RG-TR-63-26
PROJ: DA-1-8-279191-D-678
UNCLASSIFIED REPORT
SUPPLEMENTARY NOTE:
DESCRIPTORS: (*STABILIZED PLATFORMS, MISALIGNMENT),
(*INERTIAL GUIDANCE, (ALIBRATION), SERVO AMPLIFIERS,
ERRORS, AZIMUTH, STABILIZATION, SERVO AMPLIFIER,
GYROSCOPES, SIMULATION, ANALOG SYSTEMS, POTENTIOMETERS,
TACHOMETERS, SYNCHROS, DIGITAL COMPUTERS, HARMONIC
OSCILLATORS
(U)
IDENTIFIERS: PERSHING, 1963, PENDULUM (U)
THE TACHOMETER OUTPUT SINGNAL IS PROPORTIONAL TO
THE PENDULUM OUTPUT, IN THE PRESENT STABILIZED
PLATFORM ALIGNMENT AMPLIFIER FOR THE PERSHING
GUIDANCE AND CONTROL SYSTEM, USING THE PENDULUM
SIGNALS FOR A PROPORTIONAL SIGNAL IN PLACE OF THE
TACHOMETER REDUCES THE NULL REQUIREMENT OF THE
ALIGNMENT LOOP CAUSED BY THE THRESHOLD OF THE MOTOR-
TACHOMETER, A THEORETICAL ANALYSIS OF THE PRESENT
ALIGNMENT LOOPS AND THEIR EFFECT ON THE PLATFORM
SERVO LOOPS IS PRESENTED, A NEW AND MUCH SIMPLER
TECHNIQUE FOR MECHANIZING THE ALIGNMENT LOOPS IS
PROPOSED, AND THE FEASIBILITY OF THE TECHNIQUE IS
VERIFIED ANALYTICALLY, (AUTHOR)

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
AD=423 631
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
    RELIABILITY EVALUATION LAB
    TRANSPORTATION-VIBRATION TEST OF PERSHING MISSILE
    SYSTEM TACTICAL SHIPPING AND STORAGE CONTAINERS,
    PHASE III.
DESCRIPTIVE NOTE: FINAL REPT.,
        NOV 63 24P EYESTONE,R.G. :
REPT,NO, RT-TR-63-9
PROJ: DA-516-05-011
        UNCLASSIFIED REPORT
SUPPLEMENTARY NOTE:
DESCRIPTORS: (*CONTAINERS, VIBRATION), (*TACTICAL
    WEAPONS, CONTAINERS), TESTS, DUMMY LOADS,
    INSTRUMENTATION, TEST METHODS, GUIDED MISSILES ISURFACE-
    TO-SURFACE), TRANSPORTATION, DATA, EFFECTIVENESS, CARGO
    VEHICLES, STORAGE, ROCKET MOTORS, TRANSPORTS
IDENTIFIERS: PERSHING, 1963 (U)
THIS TEST SUBJECTED MODIFIED TACTICAL FIRST STAGE AND UNMODIFIED TACTICAL SECOND STAGE CONTAINERS FOR THE PERSHING MISSILE SYSTEM, AND THEIR DUMMY LOADS TO A ROAD TEST DESIGNED TO DUPLICATE THE VIBRATION SPECTRUM EXPECTED DURING TRUCK TRANSPORTATION. (AUTHOR)

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492
```

AD-422778
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA ARMY INERTIAL
GUIDANCE AND CONTROL LAB AND CENTER
A METHOD FOR MINIMIZING THE EFFECT OF THE PERSHING
ST-120 SERVO BOX INTERCHANGE ON CROSS RANGE
ACCELEROMETER DRIFT,
SEP 63 L2P WHITE,H. V. IMCCARLEY,H.
R. ;
REPT, NO, RG-TR-63-24
PROJ: DA-1-B-279191-D-678
UNCLASSIFIED REPORT
SUPPLEMENTARY NOTE:
DESCRIPTORS: I*SERVO AMPLIFIERS, GUIDED MISSILES
(SURFACE-TO-SURFACE)), (*GUIDED MISSILE COMPONENTS,
SERVOME(HANISMS), MOBILE, TACTICAL WEAPONS,
INSTRUMENTATIONS, GUIDED MISSILE COMPONENTS,
POTENTIOMETERS, ACCELEROMETERS, CALIBRATION, DRIFT,
AMPLIFIERS
IDENTIFIERS: 1963. PERSHING
A METHOD TO ALLOW THE PERSHING ST-120 SERVO BOX
TO BE INTERCHANGED WITHOUT READJUSTING THE ACCELEROMETER AMPLIFIER BALANCE POTENTIOMETER IS PRESENTED. THE METHOD INVOLVES ADJUSTING THE BALANCE POTENTIOMETER WITH THE SERVO BOX REMOVED FROM THE SYSTEM AND MAKING A FINAL MECHANICAL ADJUSTMENT ON THE ACCELEROMETER AFTER IT IS MOUNTED ON THE ST-120 PLATFORM, TEST DATA ARE PRESENTED TO SHOW THE FEASIBILITY OF USING THE METHOD, (AUTHOR)

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
```

```
AD-421930
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA TEST AND
    RELIABILITY EVALUATION LAB
    TRANSPORTATION-VIBRATION TEST OF PERSHING MISSILE
    SYSTEM TACTICAL SHIPPING AND STORAGE CONTAINERS, PART
    I.
DESCRIPTIVE NOTE: FINAL REPT.,
        OCT 63 53P EYESTONE,RONALD G. :
REPT, NO, RT-TR-63-6
PROJ:DA-516-05-011
```

UNCLASSIFIED REPORT
SUPPLEMENTARY NOTE:
DESCRIPTORS: (GUIDED MISSILES (SURFACE-TOSURFACE),
TRANSPORTATION), (*TRANSPORTATION, GUIDED MISSILES
(SURFACE-TO-SURFACE)), TACTICAL WEAPONS, TESTS, TEST
METHODS, TEST EQUIPMENT, INSTRUMENTATION, DAMAGE,
CONTAINERS, STORAGE, VIBRATION, DATA, TRAILERS, GARGO
VEHICLES, OSCILLOGRAPHS, ROADS, ROCKET MOTORS ISOLID
PROPELLANTS), GUIDED MISSILE COMPONENTS, GROUND SUPPORT
EQUIPMENT
IDENTIFIERS: 1963, PERSHING (U)

THIS TEST SUBJECTED TACTICAL CONTAINERS FOR THE PERSHING MISSILE SYSTEM, AND THEIR DUMMY LOADS, TO THE VIBRATION SPECTRUM EXPECTED DURING TRUCK TRANSPORTATION, THE TESTS WERE CONDUCTED BY THE TEST AND EVALUATION LABORATORY AT REDSTONE ARSENAL, ALABAMA, AT TEST AREA 3 IN JUNE 1963. (AUTHOR)

```
AD=419 588
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA
    LIST OF TECHNICAL DOISHED DURING THE YEARS 1958
    THROUGH 1962.
        APR 63 178P
```

 UNCLASSIFIED REPORT
 DESCRIPTORS: (*BIBLIOGRAPHIES, GUIDED MIS SILES),
(*GUIDED MISSILES, BIBLIOGRAPHIES), GUIDED
MISSILES (SURFACE TO SURFACE), ROCKET MOTORS,
ANTITANK AMMUNITION, ROCKET MOTORS ILIQUID
PROPELLANT), ROCKET MOTORS (SOLID PROPELLANT),
LAUNCH VEHICLES (AEROSPACE), GUIDED MISSILE
WARHEADS, INDEXES .
IDENTIFIERS: 1963 , JUPITER, ATLAS, REDSTONE,
PERSHING, SATURN, SERGEANT.

A BIBLIOGRAPHY OF TECHNICAL DOCUMENTS LISTS TITLES OF REPORTS PUBLISHED FROM 1958 THROUGH 1962 BY THE PRESENT ARMY MISSILE COMMAND (AMICOM), WHICH INCLUDES THE ACTIVITIES OF THE ARMY ROCKET AND GUIDED MISSILE AGENCY (ARGMA) AND THE ARMY 8ALLISTIC MISSILE AGENCY (ABMA). THE BIBLIOGRAPHY WAS COMPILED FROM LIBRARY RECORDS AND RESPONSES TO REQUESTS FOR DOCUMENT LISTINGS FROM THE RE SEARCH AND DEVELOPMENT ORGANIZATIONS OF THE COMMAND, AND MAKES NO PRETENSE OF BEING A COMPLETE COVERAGE, DUE TO PROPRIETARY INFORMA TION RESTRICTIONS, THE FORMATION AND LATER CONSOLIDATION OF ABMA AND ARGMA, AND THE FORMA TION OF NASA'S MARSHALL SPACE FLIGHT CENTER, MANY REPORTS WERE NEVER ENTERED OR RECORDED IN THE LIBRARY, FOR EXAMPLE, IT IS KNOWN THERE WERE APPROXIMATELY 35 REPORTS IN THE 4RF SERIES WHICH WERE EVALUATIONS OF MAJOR INDUSTRIAL TECHNICAL PROPOSALS WHICH DO NOT APPEAR IN THIS PUBLISHED LISTING, UNDOUBTEDLY, MANY REPORTS WRITTEN BY PERSONS WHO HAVE LEFT THE COMMAND WERE LIKEWISE NOT ENTERED IN THE LIBRARY AND WERE NOT INCLUDED IN THE SOLICITED SUBMISSIONS. (AUTHOR)

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
AD-415 045
    ARMY MISSILE COMMAND REDSTONE ARSENAL ALA PHYSICAL
    SCIENCES LAB
    ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSIL-41O,
        JUL 3OP BILLIONS,NOVELLA S. ;BAGLEY,
    HUBERT D. :
REPT. NO, RR-TR-63-20
        UNCLASSIFIED REPORT
SUPPLEMENTARY NOTE:
DESCRIPTORS: (*METEOROLOGICAL PARAMETERS, FLIGHT
THE ATMOSPHERIC ENVIRONMENT IS GIVEN FOR THE FLIGHT
OF PERSHING MISSILE-41O, WHICH WAS LAUNCHED ON 2I
MARCH 1963, AT 2O15 EST, FROM THE. ATLANTIC
MISSILE RANGE, CAPE CANAVERAL, FLORIDA,
THE GENERAL SYNOPTIC SITUATION FOR THE FLIGHT AREA,
SURFACE OBSERVATIONS AT LAUNCH TIME, AND UPPER AIR
CONDITIONS AS MEASURED BY RAWINSONDES RELEASED AS
CLOSE TO MISSILE LAUNCH TIME AS POSSIBLE ARE GIVEN,
HIGH ALTITUDE WIND DATA OVER THE LAUNCH AREA AS
DETERMINED FROM A METEOROLOGICAL ROCKET FLIGHT ARE
ALSO PRESENTED. RELATIVE DEIVATIONS OF
THERMODYNAMIC QUANTITIES FROM THE PATRICK AIR
FORCE BASE ANNUAL REFERENCE ATMOSPHERE ARE
PRESENTED IN GRAPHICAL FORM FOR EASY REFERENCE,
(AUTHOR)

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
```

AD-411 387
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA PHYSICAL
SCIENCES LAB
ATMOSPHERIC ENVIONMENT FOR PERSHING MISSILE-4O7,
BAGLEY,HUBET D, \&BILLIONS,
NOVELLA S.;
REPT, NO, RR-TR-63-19
PROJ: POJ, 1B2 791910678
UNCLASSIFIED REPORT
NOFORN

```
```

DESCRIPTORS: (*METEOROLOGY, GUIDED MISSILE

```
DESCRIPTORS: (*METEOROLOGY, GUIDED MISSILE
    RANGES), METEOROLOGICAL PARAMETES, UPPE
    RANGES), METEOROLOGICAL PARAMETES, UPPE
    ATMOSPHEE, MEASUREMENT, RADIOSONDES, WIND,
    ATMOSPHEE, MEASUREMENT, RADIOSONDES, WIND,
    HIGH ALTITUDE, METEOROLOGICAL INSTRUMENTS, DATA.
    HIGH ALTITUDE, METEOROLOGICAL INSTRUMENTS, DATA.
IDENTIFIERS: 1963, PERSHING.
THE ATMOSPHEIC ENVIONMENT IS PESENTED FOR THE
FLIGHT OF PERSHING MISSILE-4O7, WHICH WAS LAUNCHED
MACH 1963, AT 2046 EST, FOM THE ATLANTIC
MISSILE RANGE, CAPE CANAVERAL, FLORIDA.
THE GENERAL SYNOPTIC SITUATION FOR THE FLIGHT AREA,
SURFACE OBSEVATIONS AT LAUNCH TIME, AND UPPER AI
CONDITIONS AS MEASURED BY RAWINSONDES ELEASED AS
CLOSE TO MISSILE LAUNCH TIME AS POSSIBLE AE GIVEN,
HIGH ALTITUDE WIND DATA OVETHE LAUNCH AREA AS
DETERMINED FROM A METEOROLOGICAL ROCKET FLIGHT ARE
ALSO PRESENTED. RELATIVE DEVIATIONS OF THEMODYNAMIC
QUANTITIES FROM THE PATRICK AIR FORGE BASE
ANNUAL REFERENCE ATMOSPHERE ARE PRESENTED IN
GRAPHIGAL FORM FOR EASY REFERENCE, (AUTHOR)

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492
```

AD=410 411
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA PHYSICAL
SCIENCES LAB
ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSILE 4O5.
JUN 29P BAGLEY,HUBERT D,:BILLIONS.
NOVELLA S.;
REPT, NO, RR-TR-63-17
PROJ: 182791910678
UNCLASSIFIED REPORT

```
```

DESCRIPTORS: (*GUIDED MISSILE RANGES.

```
DESCRIPTORS: (*GUIDED MISSILE RANGES.
    METEOROLOGICAL PARAMETERS), (*METEOROLOGICAL
    METEOROLOGICAL PARAMETERS), (*METEOROLOGICAL
    PARAMETERS, GUIDED MISSILE RANGES,, GUIDED
    PARAMETERS, GUIDED MISSILE RANGES,, GUIDED
    MISSILES (SURFACE TO SURFACE), FLIGHT TESTING,
    MISSILES (SURFACE TO SURFACE), FLIGHT TESTING,
    WING, HIGH ALTITUDE, METEOROLOGICAL CHARTS,
    WING, HIGH ALTITUDE, METEOROLOGICAL CHARTS,
    TACTICAL WEAPONS.
    TACTICAL WEAPONS.
        (U)
        (U)
IDENTIFIERS: 1963. PERSHING.
IDENTIFIERS: 1963. PERSHING.
THE ATMOSPHERIC ENVIRONMENT IS PRESENTED FOR THE
THE ATMOSPHERIC ENVIRONMENT IS PRESENTED FOR THE
FLIGHT OF PERSHING MISSILE=4O5, WHICH WAS LAUNCHED
FLIGHT OF PERSHING MISSILE=4O5, WHICH WAS LAUNCHED
ON 4 MARCH 1963, AT 2OOO EST, FROM THE ATLANTIC
ON 4 MARCH 1963, AT 2OOO EST, FROM THE ATLANTIC
MISSILE RANGE, CAPE CANAVERAL, FLORIDA,
MISSILE RANGE, CAPE CANAVERAL, FLORIDA,
THE GENERAL SYNOPTIC SITUATION FOR THE FLIGHT AREA,
THE GENERAL SYNOPTIC SITUATION FOR THE FLIGHT AREA,
SURFACE OBSERVATIONS AT LAUNCH TIME, AND UPPER AIR
SURFACE OBSERVATIONS AT LAUNCH TIME, AND UPPER AIR
CONDITIONS AS MEASURED BY RAWINSONDES RELEASED AS
CONDITIONS AS MEASURED BY RAWINSONDES RELEASED AS
CLOSE TO MISSILE LAUNCH TIME AS POSSIBLE ARE GIVEN.
CLOSE TO MISSILE LAUNCH TIME AS POSSIBLE ARE GIVEN.
HIGH ALTITUDE WIND DATA OVER THE LAUNCH AREA AS
HIGH ALTITUDE WIND DATA OVER THE LAUNCH AREA AS
DETERMINED FROM A METEOROLOGICAL ROCKET FLIGHT ARE
DETERMINED FROM A METEOROLOGICAL ROCKET FLIGHT ARE
ALSO PRESENTED. RELATIVE DEVIATIONS OF
ALSO PRESENTED. RELATIVE DEVIATIONS OF
THERMODYNAMIG QUANTITIES FROM THE PATRICK AIR
THERMODYNAMIG QUANTITIES FROM THE PATRICK AIR
FORCE BASE ANNUAL REFERENCE ATMOSPHERE ARE
FORCE BASE ANNUAL REFERENCE ATMOSPHERE ARE
PRE SENTED IN GRAPHIRM FOR EASY REFERENCE.
PRE SENTED IN GRAPHIRM FOR EASY REFERENCE.
(AUTHOR)
```

(AUTHOR)

```
```

AD=409 485
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA PHYSICAL
SCIENCES LAB
ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSILE 406,
MAY 28P BAGLEY,HUBERT D,:BILLIONS.
NOVELLA S.:
REPT, NO, RR-TR-63-15
PROJ: 1B2 79191 D678
UNCLASSIFIED RERORT
NOFORN
DESCRIPTORS: (*GUIDED MISSILE RANGES,
METEOROLOGICAL PARAMETERS), (*METEOROLOGICAL
PARAMETERS, GUIDED MISSILE RANGESI, GUIDED
MISSILES (SURFACE TO SURFACE), METEOROLOGICAL
CHARTS, TACTICAL WEAPONS,
IDENTIFIERS: 1963. PERSHING. (U)
THIS REPORT PRESENTS THE ATMOSPHERIC ENVIRONMENT
FOR THE FLIGHT OF PERSHING MISSILE=406, WHICH WAS
LAUNCHED ON 25 FEBRUARY 1963, AT 2O31 EST, FROM
THE ATLANTIC MISSILE RANGE, CAPE CANAVERAL,
FLORIDA, THE GENERAL SYNORTIC SITUATION FOR THE
FLIGHT AREA, SURFACE OBSERVATIONS AT LAUNCH TIME, AND
UPPER AIR CONDITIONS AS MEASURED BY RAWIN SONDES
RELEASED AS CLOSE TO MISSILE LAUNCH TIME AS POSSIBLE
ARE GIVEN. HIGH ALTITUOE WIND DATA OVER THE LAUNCH
AREA AS DETERMINED FROM A METEOROLOGICAL ROCKET
FLIGHT ARE ALSO PRESENTED, RELATIVE DEVIATIONS OF
THERMOOYNAMIC QUANTITIES FROM THE PATRICK AIR
FORCE BASE ANNUAL REFERENCE ATMOSPHERE ARE
PRESENTED IN GRAPHICAL FORM FOR EASY REFERENGE.
(AUTHOR)

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492

```
AD-409 297
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA PHYSICAL
    SCIENCES LAB
ATMOSPHERIC ENVIRONMENT FOR PERSHING MISSILE 353,
```

FEB 63 BOP BILLIONS,NOVELLA S. BBAGLEY.

HUBERT D.;

```
REPT, NO. RR-TR-63-6
```

PROJ: 1B2 791910678

UNCLASSIFIED REPORT
NOFORN

```
DESCRIPTORS: (*GUIDED MISSILE RANGES,
    METEOROLOGICAL PARAMETERS), (*METEOROLOGICAL
    PARAMETERS, GUIDED MISSILE RANGES), GUIDED
    MISSILES (SURFACE TO SURFACE), WIND, METEOROLOG
    ICAL CHARTS, TACTICAL WEAPONS.
    (U)
IDENTIFIERS: 1963, PERSHING, (U)
```

THIS REPORT PRESENTS THE ATMOSPHERIC ENVIRONMENT FOR THE FLIGHT OF PERSHING MISSILE 353, WHICH WAS LAUNCHED ON 10 DECEMBER 1962 , AT 2155 EST, FROM THE ATLANTIC MISSILE RANGE, CAPE CANAVERAL, FLORIDA. THE GENERAL SYNOPTIC SITUATION FOR THE FLIGHT AREA, SURFACE OBSERVATIONS AT LAUNCH TIME, AND UPPER AIR CONDITIONS AS MEASURED BY RAWIN SONDES RELEASED AS CLOSE TO MISSILE LAUNCH TIME AS POSSIBLE ARE GIVEN, WIND DATA OBTAINED FROM MEASUREMENTS ABOARD THE MISSILE ARE COMPARED TO RAWINSONDE DATA AT THE CAPE CANAVERAL LAUNCH SITE AND DOWN RANGE AT GRAND BAHAMA ISLAND IOBSERVATION STATION NEAREST IMPACT AREAI, WIND DATA OBTAINED FROM RADAR TRACK OF AN ARCAS ROBIN METEOROLOGICAL ROCKET FLIGHT PROVIDED BY THE PATRICK AIR FORCE BASE WEATHER SERVICE IN SUPPORT OF MISSILE 353 ARE ALSO PRESENTED, RELATIVE DEVIATIONS OF THERMODYNAMIC QUANTITIES FROM THE PAFB REFERENCE ANNUAL ATMOSPHERE ARE PRESENTED IN GRAPHICAL FORM FOR EASY REFERENCE, (AUTHOR)

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492

```
AD=401 495L
    ABERDEEN PROVING GROUND MD
    PRODUCTION ENGINEERING TEST OF TIEDOWN KIT FOR
    PERSHING MISSILE WARHEAD SECTION
                                (U)
        APR G3 IV CANTEMIRY,E,G,:
REPT. NO. DPS 893
            UNCLASSIFIED REPORT
    DOD ONLY
DESCRIPTORS: *GUIDED MISSILE WARHEADS, CARGO VEHICLES,
    CONTAINERS, GUIDED MISSILES(SURFACE-TO-SURFACE),
    HANDLING, IMPACT SHOCK, PHOTOGRAPHS, TABLES, TACTICAL
    WEAPONS, TESTS
                                (u)
IDENTIFIERS: PERSHING (U)
    PRODUCTION ENGINEERING TEST OF TIEDOWN KIT FOR PERSHING
    MISSILE WARHEAD SECTION.
```

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
AD=299 424L
    ABERDEEN PROVING GROUND MD
    ENGINEERING DESIGN TEST OF WARHEAD AND ADAPTER KIT
    FOR THE PERSHING MISSILE SYSTEM ON THE XM474E2 (U)
        MAR 63 IV HANCOCK,R,P,
REPT, NO. DPS 867
            UNCLASSIFIED REPORT
DOD ONLY
DESCRIPTORS: *ARMORED VEHICLES, GUIDED MISSILE
    WARHEADS, ADAPTERS, BOMB HANDLING VEHICLES, GUIDED
    MISSILES (SURFACE - TO-SURFACE). IMPACT SHOCK, PHOTOGRAPHS,
    TABLES, TACTICAL WEAPONS, TEST METHODS, TESTS, TRACKED
    VEHICLES (U)
IDENTIFIERS: M=28 WARHEADS 3.5 IN,, M-474 VEHICLES,
PERSHING
                                    (U)
    ENGINEERING DESIGN TEST OF WARHEAD AND ADAPTER KIT FOR THE
    PERSHING MISSILE SYSTEM ON THE XM474EZ MISSILE EQUIPMENT
    CARRIER.
```


UNCLASSIFIED

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492

```
AD=298 555
    ARDE-PORTLAND INC PARAMUS N J
    CRYOGENIC STRETCH-FORMING OF SOLID-PROPELLANT ROCKET
    CASES
(U)
    DEC 62 1V CLAFFY,GEORGE:
CONTRACT: DA30 069ORD3501
    UNCLASSIFIED REPORT
NOFORN
DESCRIPTORS: *CRYOGENICS, EXPERIMENTAL DATA, ROCKET
    CASES, STRETCH FORMING, STRUCTURAL PARTS (U)
IDENTIFIERS: PERSHING (U)
CRYOGENIC STRETCH FORMING OF SOLID-PROPELLANT
ROCKET CASES.
```

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
AD-296 852
    AEROSPACE MEDICAL RESEARCH LABS WRIGHT-PATTERSON AFB
    OHIO
    ACOUSTIC NOISE AND VIBRATION STUDIES AT CAPE
    CANAVERAL MISSILE TEST ANNEX, ATLANTIC MISSILE RANGE,
    VOLUME I, ACOUSTIC NOISE (U)
        DEC 62 IV COLE,JOHN N,IPOWELL,ROBERT G,:HILLE,
    HARALD K.;
MONITOR: ASD TRG1 608 VI
            UNCLASSIFIED REPORT
        NOFORN
```

```
DESCRIPTORS: *ACOUSTICS, *GUIDED MISSILESISURFACE-TO-
```

DESCRIPTORS: *ACOUSTICS, *GUIDED MISSILESISURFACE-TO-
SURFACE), ROCKET MOTOR NOISE, HAZARDS, LAUNCHING SITES,
SURFACE), ROCKET MOTOR NOISE, HAZARDS, LAUNCHING SITES,
MATHEMATICAL PREDICTION, MEASUREMENT, STATISTICAL
MATHEMATICAL PREDICTION, MEASUREMENT, STATISTICAL
ANALYSIS
ANALYSIS
(U)
(U)
IDENTIFIERS: ATLAS, JUPITER, MINUTEMAN, PERSHING,
IDENTIFIERS: ATLAS, JUPITER, MINUTEMAN, PERSHING,
POLARIS, SATURN, SCOUT, THOR, TITAN
POLARIS, SATURN, SCOUT, THOR, TITAN
(U)
(U)
ACOUSTIC EVALUATION OF MISSILE AND SPACE VEHICLE NOISE
HAZARDS AND NUISANCE, MEASUREMENT LIMITED TO
DISTANCE RANGING FROM 15O TO 96,OOO FEET FROM LAUNCH
SITES.

```
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
 AD-295 699
ARMY MISSILE COMMAND REDSTONE ARSENAL ALA ARMY INERTIAL
GUIDANCE AND CONTROL LAB AND CENTER
A STUDY ON REDUCING OF ELIMINATING AIR CONDITIONING
IN THE PERSHING GUIDANCE AND CONTROL COMPARTMENT (U)
JAN 63 VANHOFF,PETER A,;GAMBILL,RUSSELT : ;
REPT. NO. RG TR 63 2
UNCLASSIFIED REPORT
DESCRIPTORS: *IR CONDITIONING EQUIPMENT, *TACTICAL
WEAPONS, TEMPERATURE CONTROL, CLIMATOLOGY, COOLING,
COSTS, DESIGN, DIURNAL VARIATIONS, GUIDED
MISSILES(SURFACE-TO-SURFACE), INERTIAL GUIDANCE,
INSTRUMENTATION, LABOR, SOLAR RADIATION, TEMPERATURE,
TEST EQUIPMENT, TESTS
(U)
IDENTIFIERS: PERSHING (U)
A STUDY ON REDUCING OR ELIMINATING AIR CONDITIONING IN THE
PERSHING GUIDANCE AND CONTROL COMPARTMENT.

```
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
 AD-294 145L
ARMY ENGINEER RESEARCH AND DEVELOPMENT LABS FORT BELVOIR
V A
THERMAL RADIATION MEASUREMENTS OF A POWER STATION,
TRANSPORTABLE, PERSHING GUIDED MISSILE SYSTEM (U)
DESCRIPTIVE NOTE: TECHNICAL REPT.
SEP COOP WUNDERLEY,ROBERT H.:
REPT. NO. AERDL-1722
PROJ: DA-8F23-11-001
TASK: 8F23-11-001-02
UNCLASSIFIED REPORT
DOD ONLY
DESCRIPTORS: GUIDED MISSILES(SURFACE-TO-SURFACE),
*POWER SUPPLIES, *THERMAL RADIATION, CONTROL PANELS,
ELECTRIC POWER PRODUCTION, EXHAUST GASES, EXHAUST
NOZZLES, INFRARED DETECTORS, INFRARED RADIATION,
INFRARED RESEARCH, LAUNCHING, MEASUREMENT, MOBILE,
PHOTOGRAPHIC FILM, POWER PLANTS (ESTABLISHMENTS),
RADIOMETERS, TACTICAL WEAPONS, TEMPERATURE, TESTS,
THERMAL TARGETS, ULTRAVIOLET RADIATION, ULTRAVIOLET
RESEARCH
(U)
IDENTIFIERS: PERSHING (U)
UREMENT, GUIDED MISSILES (TACTICAL),
IDENTIFIERS: PERSHING. THE THERMAL RADIATION
CHARACTERISTICS OF A POWER STATION, TRANSPORTABLE,
PERSHING GUIDED MISSILE SYSTEM IPERSHING
GENERATORI ARE DISCUSSED, A DISCUSSION IS
PRESENTED ON THE THERMAL CHARACTERISTICS OF THE
GENERATOR COLD, RUNNING UNDER SIMULATED RATED LOAD,
AND IMMEDIATELY AFTER SHUTDOWN, THE HEAT
DISTRIBUTION OF THE GENERATOR AND THE PLUME IS
EXAMINED, DISCLOSING THE PRESENCE OF THREE GENERAL
RANGES OF TEMPERATURES. RESEARCH CONCLUDES THAT:
THE EXHAUST PLUME OF THE PERSHING GENERATOR
PRESENTS AN EXCELLENT TARGET TO INFRARED DETECTORS,
AND THE RUNNING GENERATOR PRESENTS THREE RANGES OF
TEMPERATURES: THE RELATIVELY LOW TEMPERATURES OF
THE HOUSING AND PANELS, THE WARM AIR EXHAUSTS OF THE
OIL COOLER AND REAR EXHAUST FAN, AND THE VERY HOT
EXHAUST GASES. (AUTHOR)

UNCLASSIFIED

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492
AD-289 344L
    ABERDEEN PROVING GROUND MD
    PREPARATION OF CALIBRATION PROCEDURES FOR PERSHING
    MISSILE SYSTEM TRAINING EOUIPMENT(U)
        NOV GZ LV LANSDOWNE,LEVIN W;
REPT, NO. DPS 757
            UNCLASSIFIED REPORT
        DOD ONLY
DESCRIPTORS: *TACTICAL WEAPONS, *TRAINING DEVICES, TEST
    METHODS(U)
IDENTIFIERS: PERSHING (U)
PREPARATION OF CALIBRATION PROCEDURES FOR PERSHING MISSILE
SYSTEM TRAINING EQUIPMENT.
```

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, 021492

```
AD=286 979
    LYON INC DETROIT MICH
    DEVELOPMENT OF DEEP DRAWN-ONE PIECE HIGH PERFORMANCE
    ROCKET MOTOR CASE
        JUN 6O IV POREMBSKI,C.J,:
CONTRACT: DA30 115 5020RD23004
        UNCLASSIFIED REPORT
        NOFORN
DESCRIPTORS: *ROCKET CASES, *STEEL, AUSTENITE, DRAWING
    (MACHINE PROCESSING), HARDNESS, HEAT TRANSFER,
    MECHANICAL PROPERTIES, METALLURGY, MICROSTRUCTURE,
    PROCESSING, SOLID ROCKET PROPELLANTS(U)
```

IDENTIFIERS: PERSHING (U)

```
FORTY INCH DIAMETER PERSHING ZND STATE MOTOR CASE: THE SECOND GROUP OF CASES WERE PROCESSED THROUGH THE STH DRAW, METALLURGICAL ANALYSIS OF ROCKET C SE AT-5 AFTER E FIFTH COLD DRAW AN ANNEAL REVEALED; (1) TOTAL RANGE IN HARDNESS OVER THE FORWARD DOME WAS 98.5 TO 99.5 ROCKWELL B SCALE. A SOMEWHAT LONER HARDNESS THROUGHOUT THE REDUCED SIDEWALL WAS DUE TO PROCESSING DIFFERENCES: (2) DIRECTION OF THE GRAIN WAS RADIAL IN THE DOME AND LONGITUDINAL IN THE SIDEWALL, THE SIDEWALL POSSESSED A FINER AND MORE UNIFORM MACROSTRUCTURE THAN THE FORNARD DOME: (3) MICROSTRUCTURE STUDIES IN THE SIDEWALL REGIONS SHOW D A RELATIVELY FINE FERRITIC GRAIN SIZE AND COMPLETE RECRYSTALLIZATION DURING ANNEALING, F RRITIC GRAIN SIZE WAS SOMEWHAT COARSER IN THE DOME REGIONS: AND (4) EXAMINATION OF CASE SURFACES SHOWED THEM TO BE FREE OF COMPLETE DECARBURIZATION ON THE SIDEWALL REGIONS: THERE WAS NO EVIDENCE OF DECARBURIZATION ON THE DOME SURFACES.
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
 AD-285 120L
ABERDEEN PROVING GROUND MD
ENGINEERING DESIGN TEST OF CARRIER, MISSILE
EQUIPMENT, XM474EZ AND PERSHING WEAPON SYSTEM
TACTICAL COMPONENTS
U)
SEP 62 IV EDDINGTON,V,A,:
REPT, NO, DPS 615
UNCLASSIFIED REPORT
DOD ONLY
DESCRIPTORS: TRACKED VEHICLES, GUIDED MISSILESISURFACE=
TO-SURFACE), INTERNAL COMBUSTION ENGINES, TACTICAL
WEAPONS, TESTS, TRANSPORTATION (U)
IDENTIFIERS: M=474 VEHICLES, PERSHING (U)
APPROXIMATELY 16,OOO MILES OF OPERATION WERE
CONDUCTED ON FOUR XM474EZ VEHICLES IN THE
DEVELOPMENT OF ENGINEERING PERFORMANCE, ROAD SHOCK
AND VIBRATION, AND ENDURANCE DATA, ROAD SHOCK AND
VIBRATION DATA COLLECTED FOR ALL OF THE WEAPON SYSTEM
COMPONENTS WERE FORWARDED TO CODE A FOR
EVALUATION, DURING ENDURANCE TEST OPERATION, 27
SEPARATE DEFICIENCIES AND 4I SHORTCOMINGS ACCOUNTED
FOR A TOTAL OF 248 TEST INCIDENTS, EXCLUDING THOSE
INCIDENTS INVOLVING THE MAJOR WEAPON SYSTEM
COMPONENTS. HEADLIGHT SEALED-BEAM UNITS
CONSTITUTED THE GREATEST NUMBER OF VEHICLE INCIDENTS
AS A TOTAL OF S2 UNITS WERE REPLACED, TRACK AND
ROAD WHEEL LIFE ON THE VEHICLE TRANSPORTING THE
MISSILE WAS REDUCED TO APPROXIMATELY 5O% OF THE
NORMAL 40OO MILES. THE XM474E2 VEHICLES ARE
WELL ADAPTED TO TRANSPORTING THE VARIOUS PERSHING
MISSILE SYSTEM (TACTICAL) COMPONENTS, HOWEVER, IT
IS CONSIDERED NECESSARY TO CONDUCT ADDITIONAL
ENGINEERING STUDIES TO ELIMINATE THOSE DEFICIENCIES
WHICH WERE OF A DESIGN NATURE AND AS MANY OF THE
SHORTCOMINGS AS POSSIBLE. (AUTHOR)

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
AD=283 326
    TRW SPACE TECHNOLOGY LABS LOS ANGELES CALIF
    AN ANALYSIS OF THE FLUID MECHANICS OF SECONDARY
    INJECTION FOR THRUST VECTOR CONTROL (REVISED)
            IV BROADWELL,JAMES E.:
MONITOR: BSD TR-65-67
UNCLASSIFIED REPORT
DESCRIPTORS: EXHAUST GASES, GGASES, CONTROL SYSTEMS,
EQUATIONS, FLUID MECHANICS, GAS FLOW, JETS, LIQUIDS,
MATHEMATICAL ANALYSIS, PRESSURE, ROCKET MOTOR NOZZLES,
SECONDARY INJECTION, SUPERSONIC FLOW, TESTS, THEORY,
THRUST, THRUST VECTOR CONTROL SYSTEMS
IDENTIFIERS: PERSHING
AN ANALYSIS IS MADE OF THE INTERACTION OF AN INJECTED GAS OR LIQUID WITH A SUPERSONIC STREAM AND THE FORCE INDUCED ON AN ADJACENT WALL PREDICTED. THE STUDY DEALS ONLY WITH THE FREE STREAM INJECTANT INTERACTION: THE MODIFICATIONS TO THE FLOW INTRO UCED BY THE BOUNDARY LAYER ARE NOT CONSIDERED. IN THE CASE OF LIQUIDS, IT IS SHOWN THAT THE MOMENTUM DEFICIT OF THE INJECTANT RELATIVE TO THE FREE STREAM MAY PLAY A LARGER PART IN PRODUCING THE SIDE FORCE THAN THE VOLUME GENERATION BY VAPORIZATION AND REACTION, THE ANALYTICAL RESULTS ARE COMPARED WITH THOSE OBTAINED FROM EXPERIMENTS IN A WIND TUNNEL AND IN NOZZLES, (AUTHOR)
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
    ```
```

AD-282 432
LYON INC DETROIT MIGH
DEVELOPMENT OF DEEP DRAWN - ONE PIECE HIGH
PERFORMANCE ROCKET MOTOR CASE
MAY bZ IV POREMBSKI,C.J.;
CONTRACT: DA2O O18ORD23004
UNCLASSIFIED REPORT
NOFORN
DESCRIPTORS: *ROCKET CASES, DRAWING IMACHINE
PROCESSINGI, HEAT TREATMENT, IRON ALLOYS, METALLURGY,
NICKEL ALLOYS, PROCESSING, SOLID ROCKET PROPELLANTS,
STAGING

```
IDENTIFIERS: PERSHING
```

IDENTIFIERS: PERSHING
(U)
(U)
THE DEVELOPMENT OF AN IMPROVED MONOLITHIC ROCKET
MOTOR CASES FOR THE 4O IN. (AND OVER) DIAMETER
SOLID PROPELLANT ROCKETS WAS CONTINUED. THE
SPECIFIC GOALS ARE THE DEVELOPMENT OF RELIABLE MOTOR
CASES WITH HOOP-STRESS LIMITS SUBSTANTIALLY IN EXCESS
OF 200,OOO PSI STEEL EQUIVALENT. THE MOTOR CASES
MUST BE CAPABLE OF BEING PRODUCED WITH REASONABLE
EASE ON AN INDUSTRIAL SCALE AND THEIR REPRODUCIBILITY
PROVEN BY RELIABILITY TESTS AT FINAL FULL SCALE.
THE GENERAL OBJECTIVE IS TO BE ACCOMPLISHED
UTILIZING THE PERSHING 2ND STAGE MOTOR CASE
CONFIGURATION. (AUTHOR)

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492
AD-275 766
    LYON INC DETROIT MICH
    DEVELOPMENT OF DEEP DRAWN - ONE PIECE HIGH
    PERFORMANCE ROCKET MOTOR CASE
        MAR G2 IV MARTIN,WAYNE A.I
CONTRACT: DAZO O18ORD23004
            UNCLASSIFIED REPORT
NOFORN
DESCRIPTORS: DRAWING (MACHINE PROCESSING), *ROCKET
    CASES, STEEL, *TITANIUM ALLOYS, ALLOYS, ALUMINUM
    ALLOYS, CHROMIUM ALLOYS, COBALT ALLOYS, DEFORMATION,
    DIES, HARDNESS, HEAT TREATMENT, MACHINE TOOLS,
    MANUFACTURING METHODS, MECHANICAL PROPERTIES, METAL-
    FORMING PRESSES, METALS, MICROSTRUCTURE, MOLYBDENUM,
    NICKEL ALLOYS, STRESSES, VANADIUM ALLOYS (U)
IDENTIFIERS: PERSHING (U)
THE PRODUCTION OF 4O-IN, -DIAM MONOLITHIC ROCKET CASES BY COLD REDUCTION DEEP DRAWING TECHNIQUES.
```

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
AD=273 826
    LYON INC DETROIT MICH
    DEVELOPMENT OF DEEP DRAWN - ONE PIECE HIGH
    PERFORMANCE ROCKET MOTORCASE
                                    (U)
                            IV MARTIN,WAYNE A,:
                UNCLASSIFIED REPORT
DESCRIPTORS: *ROCKET CASES, *ROCKET MOTORS, *STEEL,
    *TITANIUM ALLOYS, ALLOYS, DIES, DRAWING (MACHINE
    PROCESSING), HARDENING, HEAT TREATMENT, MACHINE TOOLS,
    MANUFACTURING METHODS, METALS, MICROSTRUCTURE, NICKEL
    ALLOYS, PROCESSING, SOLID ROCKET PROPELLANTS (U)
IDENTIFIERS: PERSHING (U)
```


UNCLASSIFIED

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
AD-269 913
    LYON INC DETROIT MICH
    DEVELOPMENT OF DEEP DRAWN - ONE PIECE HIGH
    PERFORMANCE ROCKET MOTOR CASE
        (U)
        NOV 61 IV MARTIN,WAYNE A.:
CONTRACT: DAZO O18ORD23OO4
            UNGLASSIFIED REPORT
OESCRIPTORS: *ROCKET CASES, *ROCKET MOTORS, HARDENING,
    HEAT TREATMENT, IRON ALLOYS, MANUFACTURING METHODS,
    MECHANICAL PROPERTIES, METALLURGY, METALS,
    MICROSTRUCTURE, NICKEL ALLOYS, PROCESSING, PRODUCTION,
    SMALL TOOLS, SOLID ROCKET PROPELLANTS, STEEL, TITANIUM
    ALLOYS, TORPEDO COMPONENTS (U)
IDENTIFIERS: PERSHING (U)
```


UNCLASSIFIED

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, 021492

```
AD=268 925
    LYON INC DETROIT MICH
    DEVELOPMENT OF DEEP DRAWN-ONE PIECE HIGH PERFORMANCE
    ROCKET MOTOR CASE
                                    (U)
    OCT 61 IV MARTIN,WAYNE A,:
CONTRACT: DAZO O18ORD23004
```

UNGLASSIFIED REPORT
DESCRIPTORS: *ROCKET CASES, *ROCKET MOTORS, DEFORMATION,
DIES, DRAWING (MACHINE PROCESSING), GUIDED MISSILES,
HEAT TREATMENT, MANUFACTURING METHODS, MICROSTRUCTURE,
NICKEL ALLOYS, PROCESSING, PRODUCTION, ROCKET
PROPULSION, SMALL TOOLS, SOLID ROCKET PROPELLANTS,
SURFACE-TO-SURFACE, TESTS, TITANIUM ALLOYS, TORPEDO
COMPONENTS

```
IDENTIFIERS: PERSHING
(U)
```

```
AD-265 918
    NAVAL RESEARCH LAB WASHINGTON D C
    NONDESTRUCTIVE TESTING OF GLASS EPOXY POLARIS MOTOR
    CASES
DESCRIPTIVE NOTE: TECHNICAL MEMO.
        DEC 61 13P ABEL,JOHN E,;
REPT, NO, NRL-TM=167
PROJ: NRL-62-RO5-19A
```

UNCLASSIFIED REPORT
DESCRIPTORS: *HYGROMETERS, *ROCKET CASES, ABSORPTION,
DETECTION, DETERMINATION, DIELECTRIC PROPERTIES, EPOXY
PLASTICS, FIBERS, FILAMENT WOUND CONSTRUCTION,
FILAMENTS, GLASS TEXTILES, GUIDED MISSILES, LAMINATES,
MEASUREMENT, MOISTURE, NON-DESTRUCTIVE TESTING,
PLASTICS, SURFACE-TO-SURFACE, TEST EQUIPMENT,
UNDERWATER-TO-SURFACE
IDENTIFIERS: MINUTEMAN, PERSHING, POLARIS (U)
THE LABORATORY MODEL OF THE TEST INSTRUMENT WAS
MECHANIZED TO MEASURE THE DISSIPATION FACTOR OF THE
DIELECTRIC (THE MOTOR CASE). THE DISSIPATION
FACTOR OF THE DIELECTRIC VARIES AS A FUNCTION OF
MOISTURE CONTENT, THE MEASUREMENT METHOD USES THE
Q OF A VERY STABLE TUNED CIRCUIT AS A STANDARD FOR
COMPARISON. A CONCENTRIC PROBE IS CONNECTED IN
PARALLEL WITH THE CAPACITOR ELEMENT OF THE TUNED
CIRCUIT, THE SAMPLE TO BE INVESTIGATED IS PLACED
ON THIS PROBE AND THUS FORMS THE DIELECTRIC PORTION
OF A CAPACITOR, IF THE DISSIPATION FACTOR OF THIS
DIELECTRIC IS CHANGED BY WATER ABSORPTION THEN THE
RESULTANT Q OF THE TUNED CIRCUIT WILL BE LOWERED,
(AUTHOR)

UNCLASSIFIED

DDC REPORT EIBLIOGRAPHY SEARCH CONTROL NO. 021492

```
AD-264 996
    LYON INC DETROIT MICH
    DEVELOPMENT OF DEEP DRAWN - ONE PIECE HIGH
    PERFORMANCE ROCKET MOTOR CASE
        JUN 6I IV MARTIN,WAYNE A.;
CONTRACT: DAZO O18ORD23004
UNCLASSIFIED REPORT
```

```
DESCRIPTORS: *ROCKET CASES, *ROCKET MOTORS, *STEEL,
```

DESCRIPTORS: *ROCKET CASES, *ROCKET MOTORS, *STEEL,
*TITANIUM ALLOYS, ALUMINUM ALLOYS, CHROMIUM ALLOYS,
*TITANIUM ALLOYS, ALUMINUM ALLOYS, CHROMIUM ALLOYS,
COATINGS, DIES, DRAWING (MACHINE PROCESSING), HEAT
COATINGS, DIES, DRAWING (MACHINE PROCESSING), HEAT
TREATMENT, IRON ALLOYS, LUBRICANTS, MANUFACTURING
TREATMENT, IRON ALLOYS, LUBRICANTS, MANUFACTURING
METHODS, NICKEL ALLOYS, SALTS, SMALL TOOLS, SOLID ROCKET
METHODS, NICKEL ALLOYS, SALTS, SMALL TOOLS, SOLID ROCKET
PROPELLANTS, TORPEDO COMPONENTS, VANADIUM ALLOYS (U)
PROPELLANTS, TORPEDO COMPONENTS, VANADIUM ALLOYS (U)
IDENTIFIERS: PERSHING (U)
IDENTIFIERS: PERSHING (U)
PROGRESS IS REPORTED ON THE SPECIAL TOOLING
(DIES AND PUNCHES) FOR PRODUCING THE 4O-IN,-DIAM
MONOLITHIC ROCKET MOTOR CASES, METALLOGRAPHIC
EXAMINATIONS OF STRAIN-HARDENED SAMPLES OF 20%
NI, 25 NI STEELS, AND THE ALL BETA TI ALLOYS
INDICATE THE ABSENCE OF INTERNAL MICROCRACKS, THE
NI STEELS APPEARED TO BE COMPATIBLE WITH THE
COATING, SOAP SOLUTIONS, AND SALT BATH USED FOR
STEEL, WHILE THE ALL BETA TI ALLOY TENDED TOWARD A
MARGINAL SURFACE FINISH WHEN HEATED IN THE SALT BATH.
IT IS PROPOSED TO USE THE TOOLING FROM AN OBSOLETE
Z-IN. ROCKET PROGRAM FOR SUB-SCALE DEEP DRAWING TESTS
ON THE 2O% NI AND 25% NI STEEL AND THE ALL BETA
TI ALLOY.

UNCLASSIFIED

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
AD-259 977
    LYON INC DETROIT MICH
    DEVELOPMENT OF DEEP DRAWN - ONE PIECE HIGH
    PERFORMANCE ROCKET MOTOR CASE
        APR 61 IV
CONTRACT: DA2O 018ORD23004
        UNCLASSIFIED REPORT
DESCRIPTORS: *ROCKET CASES, *STEEL, DRAWING IMACHINE
    PRO(ESSING), HEAT TREATMENT, MANUFAGTURING METHODS,
    ROCKET MOTORS, SOLID ROCKET PROPELLANTS, TITANIUM
    ALLOYS(U)
```

IDENTIFIERS: PERSHING (U)

UNCLASSIFIED

```
    DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO, O21492
AD-256 536L
    ABERDEEN PROVING GROUND MD
    ROAD SHOCK AND VIBRATION TEST OF PRIMARY POWER PACK
    NO, 1 ON THE XM474EI VEHICLE FOR THE PERSHING WEAPON
    SYSTEM
        MAY 61 IV EDDINGTON,V,A,:
REPT, NO, DPS 208
            UNCLASSIFIED REPORT
        DOD ONLY
DESCRIPTORS: FIRE CONTROL SYSTEMS, TRACKED VEHICLES, 
THE PRIMARY POWER PACK NO, I FOR THE PERSHING
WEAPON SYSTEM WAS MOUNTED ON AN XM474EI VEHICLE,
AND THE COMBINED UNIT SUBJECTED TO A LIMITED AMOUNT
OF OPERATION OVER VARIOUS COURSES. SHOGK AND
VIBRATION DATA WERE RECORDED DURING ALL PHASES OF THE
TEST, A STUDY OF THE STATISTICAL AND SPECTRAL
ANALYSIS DATA INDICATES THAT THE DESIGN CRITERION OF
EIGHT G IS A REALISTIC LIMIT, NO MAJOR FAILURES
OCCURRED DURING THIS TESTING, BUT THIS CANNOT BE
CONSTRUED AS INDICATIVE OF UNIT RELIABILITY, SINCE
ONLY A LIMITED AMOUNT OF OPERATION WAS PERFORMED,
(AUTHOR)
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
 AD-250 686
LYON INC DETROIT MICH
DEVELOPMENT OF DEEP DRAWN- ONE PIECE HIGH PERFORMANCE
ROCKET MOTOR CASE
(U)
DEC 6O 1V
CONTRACT: DAZO 0180RD23004
UNCLASSIFIED REPORT
NOFORN
DESCRIPTORS: *ROCKET CASES, HEAT TREATMENT, MACHINING,
MANUFACTURING METHODS, ROCKET MOTORS, SOLID ROCKET
PROPELLANTS, STEEL (U)
IDENTIFIERS: PERSHING (U)

```

\section*{UNCLASSIFIED}
```

 DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
 AD=248 187
LYON INC DETROIT MICH
DEVELOPMENT OF DEEP DRAWN - ONE PIECE HIGH
PERFORMANCE ROCKET MOTOR CASE(U)
NOV 6O 1V
CONTRACT: DA2O O18ORD23004
UNCLASSIFIED REPORT
NOFORN
DESCRIPTORS: *ROCKET CASES, HEAT TREATMENT,
MANUFACTURING METHODS, METALLURGY, ROCKET MOTORS, SOLID
ROCKET PROPELLANTS, STEEL
(U)
IDENTIFIERS: PERSHING, POLARIS (U)

```

\section*{UNCLASSIFIED}

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. 021492
```

AD-245 O15L
ARNOLD ENGINEERING DEVELOPMENT CENTER ARNOLD AIR FORCE
STATION TENN
STATIC AND DYNAMIC TESTING OF CONICAL TRAILING
DECELERATORS FOR THEPERSHING RE-ENTRY VEHICLE
OCT GO IV COATS,JACK D,;
REPT, NO, TNGO 188
CONTRACT: AF40 600 800
UNCLASSIFIED REPORT
DOD ONLY
DESCRIPTORS: AERODYNAMIC CHARACTERISTICS, AERODYNAMIC
HEATING, ATMOSPHERE ENTRY, CONICAL BODIES, DECELERATION,
GUIDED MISSILES, INSTRUMENTATION, MODEL TESTS,
REDUCTION, REENTRY VEHICLES, STABILITY, SUPERSONIC FLOW,
SURFACE=TO-SURFACE, TESTS (U)
IDENTIFIERS: PERSHING (U)

```

\section*{UNCLASSIFIED}

DDC REPORT BIBLIOGRAPHY SEARCH CONTROL NO. O21492
```

AD-225 267
VITRO CORP OF AMERICA NEW YORK
A HISTORY OF INERTIAL GUIDANCE (U)
SER 59 IV MUELLER,F.K.;
CONTRACT: DA30 069ORD2331
UNCLASSIFIED REPORT
NOFORN
DESCRIPTORS: ACCELEROMETERS, HISTORY (U)
IDENTIFIERS: JUPITER, PERSHING, REDSTONE, THOR (U)

```

UNCLASSIFIED

UNCLASSIFIED

TO THE ADDRESSEE:
(1) Fold the pages as indicated
(2) Staple as indicated
(3) Mail to DDC

Defense Supply Agency Official Business
```

TO: Defense Documentation Center
ATTN: Terminology and Standards Branch (DDC-TAT)
Cameron Station
Alexandria, Virginia 22314

```

This form is enclosed in DDC Report Bibliographies prepared from DDC's collection of DoD generated Research and Development Documents for users within the U.S. Government. The objective is to obtain information to improve our bibliography service to customers. You, the user, can help DDC to improve service to you if you will complete this form and return by mail.

\section*{Bibliography Processing Feedback}
1. Search subject: \(\qquad\) .
2. Search number ARB - Number of references: \(\qquad\) .
3. Date request mailed \(\qquad\) - Date requested bibliography recieved \(\qquad\) .
4. Bibliography request sent in by (please circle):
\(\underline{\text { First Class Mail Airmail } \quad \text { Telecommunication }}\)
5. Date this questionnaire was completed: \(\qquad\) .
6. Did you use this bibliography? Yes \(\qquad\)
7. Did you receive this bibliography in time to be of some value? Yes__No_
8. Give an estimated monetary value of this bibliography to your organization: \$ \(\qquad\) . What is your DoD User Code?
9. Did the requester cite all possible identification of the desired information needed? Yes_ No__. If answer is no, please list other identifying information: \(\qquad\) .

Do you desire another search using this information? Yes_ No_
10. Over-all bibliography evaluation (please circle appropriate numbers):
\(\frac{\text { Extremely Valuable }}{4} \quad \frac{\text { Valuable }}{3} \quad \frac{\text { Satisfactory }}{2}\)
Some Useful Information
1 \(\frac{\text { Provided No Help }}{0}\)
11. Comments on the basis for the above evaluation:
12. Comments about terminology used in this search:
13. General comments other than above:
14. Is this your first bibliography request? Yes No

User Organization:
Phone Number:```

