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ABSTRACT

Manned space flight offers the opportunity to couple the astronaut/scientist's
ability to select and process data and to calibrate, modify and repair instru-
mnts with the vantage point for astronomical observations provided by a

platform located above the Earth's atmosphere,

.nis paper briefly examines the role which manned space flight may play in
the 1970-1990 time period in meeting astronomy research needs. The instru-

ments and facilities which appear feasible for that period are described.



INTRODUCTION

The unparalled research opportunities offered by our current capability to
launch large payloads into Earth orbit are perhaps nowhere more evident
than in astronomy and astrophysics. The terrestrial atmosphere, whille
essential for life as we know it, is a major hindrance to astronomical obser-

vations from the surface of the Earth,

A summary of the transmission properties of the Earth's atmosphere and
isonosphere is shown in Figure 1. The atmosphere is totally opaque to
radiation of wavelengths shorter than about 29001&, i.e,, the UV, X-ray, and
gamma; ray bands of the electromagnetic spectrum. This radiation is
absorbed by ozone, oxygen, and nitrogen in the atmosphere, As a conse-
quence, astronomical sources which emit strongly in these bands cannot be
observed from the ground to full advantage (as in the case of hot, carly-type
stars), and in some cases cannot be observed at all (e.g., some X-ray
sources). In the IR wavelength region (0,7 to 100u) and in the submillimeter
and millimeter region (100 to about 10 mm), water vapor and carbon dioxide
absorb in broad bands leaving scattered wavelength windows of varying
transparency. In this large region lies the -emission maximum of all star-
with effective atmospheric temperatures below 5, 000°K, including the
interesting pre-main-sequence objects, plus interstellar clouds and sources
of synchrotron emission (e.g., quasi stellar objects), The Earth's ionosphere
attenuates radio waves longer than 30 m (frequencies less thgm 10 MHz). The

solar corona and the trapped particle belt surrounding Jupiter are known to

emit in the VLF radio band.
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In addition to the inherent attevuation of the atmosplere, variable conditions
suchas cloud cover can block all radiation except the middle radio wavelength
band. PPoor weather has traditionally driven astronomers to mountaintop
locations in the arid regions of the world. KEven then, the clear sky varies in
opacity and the microflunctuations of the refractive index of air cause scintil-
lation and distortion, Under the bc:slst of viewing conditions, the Earth's
atmosphere diffusely scallers light from the sun, stars, and artificial sources,
It also contains lwo sources of line emission, the air glow and the aurora.

As a result the sky is not black, even on the da rkest, moonless nights, and

contamination of aslronomical speclra occurs,

A Jinal point to be considered is that even in the spectral windows through
which "seeing' [rom FEarth is practical, removal of the neutral filtering
cffect of the almosphere through use of a platform in space would permil an
inercase in distance penelration of more than an order of magnitude, i.c.,
from about 400 m-parsecs or 1,09l light years (the distance to BDootes cluster),
: Biale, 2 _ 10 . oo
to 5, 000 m-parsecs (sece Figure 2), i,e,, grealer than 10~ light-years.
This distance is beyond the limits of the universe as predicted by mosl

cosmologists!

T6 date, with the exceplion of high-altitude aircraft and balloon flights, the
potential of space has been restricted to unmanned probes and satcllites.
Sounding rockets have carried radiation deteclors to the outermost fringes

of the almosphere with spactacular results even though the observing times
are limited to several minutes. Currently, the Orbiting Solar Observatory
spaceeralt (OSO series) and the Radio Astronomy Ixplorer (RAE-A) are

recoirding solar phenomena and surveying radio frequencies respectively.
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In view of the scientific richness of these prograins, it can he anticipated
that design and development efforts for unmanned satellites such as the

OS0, Orbiting Astronomical Observatory (OAQO) and the "Explorer' series

will continue in the near term,

With the advent of mammed spaceflight, however, the astronaut/scientists'
ability to sclect and process data and lo calibrate, modify, and repair instru-
ments can be coupled with the vantage poinl for astronomical observations
ahove the FEarth's atmosphere, Lo yield an unprecedented opportunity for

advanced rescarch and observation,

In spite of ils vast polential, manned space astronomy will involve relatively
large capital investments and generally be limited to orbits where "standard"
recovery and communication facilities can be utilized, Because of this,
unmannced salellites may conlinue lo offer altractive advantages [or certain
classes of observations which require simple, reliable instruments and for

observalions requiring unique orbital characterislics.

Thus, while the opportunities for important astronomical research from a
platiorm in Earth orbit are clear, sip,n-ifjcan! planning questions arise, I'or
example, what is the role of manned space vehicles in space astronomy?
Granted that wmmanned probes have dc-emnnsquted Lthe value of observation
from space, to whal degree can the advent of manned operations in spacce be
capitalized upon lo further the aims of space astronomy? Considering the
real-life constraints of limited fiscal and intelleclual resources, is therce an
orderly plan which can be suggesled for the accomplishment of a meaningful
arl siy_lluif’n:ai'al rescarch program? The purpose of this paper is to examine
the role which manned space [light may play in l'u]l'iiling the most critical

resecarch objectives of the astronomy community.,




THIS ELEMENTS OF A PROGRAM PLAN--FUTURE MANNED FACILITIES

In developing a Program Plan for Earth Orbital Asllronomy, the authors have
drawn heavily upon the recently completed Orbital Astronomy Support
Facility Study (OASI) conducted by the McDonnell Douglas Astronautics
Company — Western Division for the Marshall Space Flight Center of NASA. "
The specific'purpusc of that study was (1) to identify and analyze elements

of a long-range cvolulionary plan for the 1974 Lo 1990 time period that would
fulfill the nceds of the scientific community to as large an extent as possible,
with flexibility for change as new data aboutl the universe stimulate new
objectives; and (2) to assess the requirements which such a long-range space

astronomy program would place on manned orbital facilities,

In developing the approach to this plan, the stidy team was faced wilth several
significant challenges, TFirst, it was important Lo recognize that long-range
programs of national scope require considerable time for the development of
necessary systems and equipment, Long-range planning is therefore desir-
able because it offers the promise that necessary long-term fiscal commit-
ments can be made and that the systems and equipment required will be
available by the time they are scheduled for use, Yel, the team recognized
that in scientific disciplines, unexpected rather than planned events often
contribute most significantly to scientiflic insight, and such unexpected

discoverics could well influence subsequent planning,

Furthermore, while rigid rescarch plans may facilitate the design of the

space instruments, they may stifle innovative research, Recognizing these

*Contract NAS8-21023.



aspects, the study team sought to develop an approach that would provide
concepts structured well enough for initial planning and for the derivation of
instrumenl and space station designs but flexible enough to permit change and

individual contributions and participation,

To accomplish the systematic definition of astronomy program requirements,
the OAéF Study was organized into three major tasks, Task A was the
development of a comprehensive baseli;ie research program and the establish-
ment of space~-dependent measurements and mission requirements, Task B
was the identification of astronomical instruments, the conceptual design of
new instruments, if needed, and the preparation of development plans for
time-phased instrument groups. Task C was the definition of orbital facility
concepts, the specification of the scientific instrument groupings for each
conée_pt, and the definition of the operational interface between ground and
flight facilities, Critical supporting research and technology development

items to support the evolutionary program plan were also idéntified,

The OASF baseline research program was prepared by a team of specialists
using g‘eneral and specific recommendations from members of the scientific
community. The scientific consultants provided the major source of infor-
mation for the formulation of research requirements, Their recommendations
and advice were used to derive specific research objectives and to determine
quantitative requirements for obse rvations and measurements, At several
points in the period of information generation, progress was reviewed with
cognizant NASA agencies and the scientific contributors. At all times, a
diligent attempt was made to produce a research program scientifically valid
for the 1974 to 1990 period on the basis of the present understanding of the

universe and the anticipated research needs,



At the start of the work, astronomical objectives were defined in terms of
research steps or questions, rather than in terms of physical objects., With
fundamental research as the starting point, various subobjectives were
established, together with their attendant observation or measurement
requirements. These requirements were summarized and documented on
91 Observation Requirement Data Sheets (ORDS), Approximately 50 param-
eters were tabulated on each of the 91 forms, Of these parameters, those
considered to be basic in establishing observation requirements were Epoch
‘Span; Wavelength; Radiation Flux; Number and Frequency of Observations;
Angular Field of View; Angular Resolution; and Accuracy of Data Required,
Other entries were mission-oriented or represented initial estimates of data
and of instrument characteristics, These estimates were iterated and aug-
mented during the study to achieve a more refined set of observation

parameters,

The ORDS described measurements across the electromagnetic spectrum
except for two regions. One region was the sector from approximately 1 cm
to 20 m in wavelength, This sector was not examined in depth because of the
general transparency of the atmosphere in this spectral region. Similarly,
it was believed that adequate data in the millimeter and submillimeter

regions could be obtained at much lower cost by using ground and aircrafl

observations,

While the requirements summarized on the data sheets were considered

valid examples of potential orbital astronomy activities, they weré neither
research proposals nor an exhaustive grouping of potential orbital observa-
tions. Nevertheless, the measurement descriptions were sufficiently detailed

to provide the initial analysis of needs for instrumentation and support

facilities and for identification of necessary technological advances.



The measurement requirements defined in the ORDS were grouped into
classes aqcording to the degree of similarity Iof their characteristics,
Generic classes of instruments were then identified which could satisfy the
discrete groups of measurement requirements, Figure 3 gives an example of
this process using stellar and planctary observations for the IR, visible,

and UV portions of the spectrum, FEach verlical line indicates the wavelength
range and the angular resolution required in one of the ORDS; the dot indicates
the wavelength at which the angular resolution was specified. Study of th.c
groupings of observation requirements with ;'espect to the diffraction limita-
tions inhereunt in optical lelescope performance (sloping lines) and considera-
tion of the observations available from ground-based observatories (shaded .
areas), led Lo the identification of general instrument classes providing the
specified capabilities. The considerations illustrated were the first step in

a sclection process thal evenlually led to the suggestion for four Lypes of

instruments for IR, visible, and UV measurements:

A A wide-angle telescope (0. 3;—1‘n apel'tul.‘e UV Schmidt) for sky survey
work in the UV region, sir11i.la;~ to sky surveys that hav;: been made
in the visible region with grouhd-based Schmidt telescopes, and
capable of being upgrac-icd with an advanced version (1-m) in later

years for more advanced sky-survey requirements,

B. A telescope of large aperture but less than the highest quality
optics (1-m, aperture, non-diffraction-limited, UV-visible) to
‘provide adequate capability for significant speclrographic observation

in the UV region and for some UV imaging.
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C. A large-aperture, high-quality-optics telescope (1-m, aperture,
diffraction-limited, UV-visible-IR) for observations with a finer
angular resolution than possible [rom ground-based telescopes in
the visible region, and for finc-angular-resolution observations in

the UV,

D.* A very-large-aperture telescope (3-m, aperture, diffraction-
limited, UV-visible-IR) to extend the angular resolution of both
visible and UV observations, which is a gencration later than the

l-m diflfraction-limited telescope,

Similar analyses which were conducted for each of the other measurement
areas involved a preliminary consi.dera:tinn of over 60 different instruments,
NASA~furnished information on instrument concepts and designs was used
where possible to take advantage of experience from previous and current
design aclivities; where no data existed, new instrument designs were

conceived,

The study team reviewed the instrument designs with scientific contribulors
and instrument specialislts, As a result of these discussions, more promis-
ing design approaches were made possible and :mam; design criteria derived
from the consultants' colleclive experience were included; consequently,

29 generic instrument types werce defined which are considered as meeling

projected orbital observation requirements through the 1990 period,

Three time periods were used to categorize the evolving level of sopbistica-
tion of mavnned space opervation, in general, and astronomical research. in
parficular, Thesc periods were designated carly (1968 to 1973), inter-

j}_}ctliafi(l‘??—‘l' to 1979), and late (1980 to 1990). The carly period reflected



the short-duration (30-day) Orbital Work'shop- Apollo Te.lescdpe Mount (ATM-A)
mission capability, The intermediate time period reflected a more sophisti-
caled 1- to 2-year space stat.ion-. The late tirne period was éredicated upon .
a six- to nine-man extended life (5-year) space station which could be antici-
pated as evolving into a national multipurpose facility in the late 1980's,
These space facilily concepts were treated as. rcpré;senting classes of avail-
able technology, rather than as fixed configurations modi-fied speci[i.call)r.ﬁt;r
astronomy. Because tﬁe initial Apollo Telcacopé Mount (ATM-A) effort has
been already defined by NASA, the OASFE Study emphasized the ATM-A
follow-on or intermediate period (1974 to 1979, i.e., post ATM) and a late
period (1980 to. 1990), Table 1 describes the characteristics of the 29 geuneric

instrument types suggested for the intermediate and late time periods,

Of the 29 gencric instrumeculs identified in Table 1, 22 were based on current
instrument-development activities., To provide the information required for
Task G, each instrumenl in the time-phased groups had to be brought to a
fairly uniform level of (:'onceplua.l design, As appropriate, instrumenls based
on kn‘own designs were adapted or rﬂodified or new conceptual designs were
provided, During the conceplual design process, provision for crew parlici-
palion in the in-orbit operation of the instruments was reflected in the designs

wherever this was judged to provide the greatest elfectiveness,

Analysis of crew operalion of various ins.trumcnts indicated a significant
role for man in the astronomy program. Crew members are expected to
participate in orbital astronomy operations with all instruments, but to
varying degrees. Radio lelescopes are essenlially automatic; however, man

may prove valuable [or correclive or periodic maintenance and modifications,
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With optical telescopes, man is involved in nearly all functions; i, e,, from
updating or retrofitting sensors or changing film cassettes, to locating-
specific observational objectives such as areas of high solar activity. The

crew may not be required for operating and monitoring radiation counters,

The manned orbital facilities (O. F. ) assumed to be available in the time
periods of interest are illustrated in Figure 4. They included two of the
Earth orbital space station (EOSS) class, 2-year, six-man space stations in
low-altitude (200-nmi), low-inclination (300 to 500) orbits in the intermediate
period. As noted above, in the late time period, the stations were visualized
as evolving into 5-year, six- to nine-man manned orbital research laboratory
(MORL) class stations in low-altitude, low-inclination, and polar orbits;
then, into a long-duration, national multipurpose facility in a low-inclination,
low-altitude orbit, Also considered were a series of short duration, non-
resuppliable missions to synchronous orbit, The orbital facilities utilized
have been numbered from one to eight, in approximate order of launch

sequence,

The alternatives for housing and operating instruments in the various orbital

facilities can be classified into three general categories:

1, Integrated--The instrument is attached to, and wholly dependent
on, the manned space-station subsystems (propulsion, power,

data management, crew systems).

2. Semidetached (Intermittently-Detached)--The instrument module
can operate for limited times, independently (free-floating) ot
the manned space station and must have all subsystems required
to support itself as an independent satellite, This module's normal

mode of operation is attached to the space station,
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3., Detached--The instrument's mode of operation is as an independent,
free-floating satellite, station-keeping with the manned space
station and dependent on it for maintenance, repair, resupply of
consumables (e.g., propellants and film), modifications of instru-
ments, possibly some data management, communication, and

experiment program sequencing commands,

To determine general guidelines in optimal operations-mode (integrated,
semi-detached, detached) selection, the unique requirements for radio,
optical (IR-visible-UV-XUV--longer than 1;&), and high-energy radiation
(X-ray to cosmic ra-y-—shorter than 11&) observations, were examined in some

depth,

Earth-based and low-altitude radio telescopes are limited in their usefulness
below roughly 30 MHz by the reflection, absorption, refraction, and polariza-
tion rotation effects of the ionosphere, The most highly ionized part of the
ionosphere is the F-region. Above the F-region ionization maximum, the
electron density falls off, to merge eventually with that of the plasma surround-
ing the ‘sun. A long-wave radio astronomy antenna placed above the F-region

can both receive signals from outside the Earth, and be freed from radio

noise generated on Earth by the shielding of the ionosphere,

The orbit altitude should be such that the local number of electrons must

1/2 kHz) must be < 0. 5times

be s 9 em™3 and the plasma frequency (f 29 He
the minimum operating frequency (50 kHz), These conditions exist only

above the 12, 500-mi (20, 000-km) altitude,

Besides the requirements for very-high-altitude orbits, which would seriously.

limit the time available for manned operations, radio noise interference can



be expected to increase near any manned spacecraft, For these reasouns,
an unmanned, detached antenna configuration was suggested as the normal

operating mode for radio astronomy,

Because high-energy radiation devices can tolerate coarse attitude control
and are not subject to appreciable degradation by spacecraft effluents, it
;ppeared that this class of instrumentation could be intégrated into the basic
space-station configuration, or operated Iwhile attached to the station, without

the need for sophisticated mounting provisions,

The selection criteria for the operations mode of the optical group were less
obvious and it was necessary to examine the factors which could influence

operations-mode selection for the optical instruments in greater detail,

Selection and recommendations for optical telescope operations modes were
based on (1) scientific and technical performance, as affected by such factors
as optical environment contamination, radiation effects, attitude hold
(dynamic isolation), thermal stability, and data management; (2) operations,
as affected by flexibility for modifications, maintainability, reliability, useful
life, multipurpose missions impact, discretionary payload, and schedule
flexibility; and (3) cost. In general, the optical group of instruments was
characterized by precise attitude-hold requirements (1 arc-sec or lower)

and sensitivity to spacecraft effluent environment,

Figure 5 summarizes the criteria which were investigated in attempting to
evaluate the potential of integrated, semi-detached, and detached modes of
operations for the optical instruments, Each mode carried certain advantages

and penalties, The potential problem of environment contamination in the
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vicinity of a manned space station favored detached module operation. The
potential need to store data on film to avoid saturating the data transmission
capabilities, favored integrated operation (in view of the potential for better
shielding provisions on a manned space station using ecological water),
Dynamic isolation of instruments can be achieved in any operational mode but
may be easier to accomplish in a detached module. Detached and semi-
detached modes obviously offer advantages in improved schedule flexibility
(equipment does not need to be launched with a space station), and reduced
‘impact on station operations when several different observation programs
must be accomplished simultaneously. Although no one factor could be
determined which would make one mode of operation mandatory for optical
instruments, examination of the factors considered to be most critical

(i.e., environment contamination, dynamig isolation, data management,
maintainability /reliability, multipurpose mission impact, and schedule flex-
ibility) suggested that a detached module concept for housing optical instru-

ments offered considerable potential and should be explored in greater depth,

The generic classes of instruments proposed for each of the eight orbital
facilities is shown in Figure 6, The observation programs and their
associated instruments generally evolve from simpler survey or gross data-
collection tasks to detailed observations of faint, small sources requiring
larger apertures or more sensitive detectors, The demands on orbital-
facility resources correspondingly evolve to more precise pointing, greater
data-handling capability, stricter thermal control, less optical environment
contamination, and specilalized orbits for long-term uninterrupted viewing of

celestial objects. This growth is reflected in the distribution of instruments

among the orbital facilities,
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The synchronous missions (No, 1, 6, and 7) are utilized in this plan only

for radio astronomy because of the unique requirements of radio observations.
If man is present, crew duties might involve radio telescope deployment,
checkout, and monitoring of initial operations, The crew would then return

to Earth after 14 to 28 days, leaving the automated instruments behind.

A possible alternative would be to conduct the entire radio astronomy mission
in an unmanned mode, Determination of the optimal degree of involvement of

the crew in these synchronous missions remains to be investigated.

The low-altitude, low-inclination missions (No, 2, 3, 4, and 8) would be
visualized as supporting evolving groups of instruments in other regions of
the electromagnetic spectrum, from gamma ray detectors through IR detec-
tors through IR telescopes. It is anticipated that other instruments besides
the 3-m telescope (Reference 10) will probably orbit with the national multi-
purpose facility (No. 8). The design of other instruments for use in this
time period, however, must wait for the results of the earlier astronomy

programs,

The polar mission (No. 5), if placed in a sun-synchronous orbit (980), would
offer a unique opportunity for continuous viewing to an array of advanced
solar instruments, The gas Cerenkov counter would be planned for polar

orbit to allow observation of cosmic ray electrons down to 0.1 GeV,

The synchronous orbit is most desirable for general observations of the
celestial sphere. From synchronous orbit, any portion of the celestial
sphere can be continuously viewed for periods of at least 24 hours, In lower
altitudes, a 98° orbit provides continuous viewing for most of the ecliptic

plane, relatively small portions of the galactic plane, and short viewing



periods tor both the center of the Galaxy and the galactic poles. A 50° orbit
provides limited continuous-viewing capability for a small portion of the
ecliptic plane, and for the plane, poles and cent‘er of the Galaxy. Each of
the low Earth orbits can view all of the celestial sphere for short periods of

time.

Long-duration solar viewing can be obtained only in a sun-synchronous, or
near-polar orbit, For each orbit altitude, there is only one orbit inclination
that yields the required precession of 0, 9860/day to achieve a sun-
synchronous orbit, Deviations from this ideal would reduce the time for
continuous viewing, For example at 200 nmi, the optimal orbit would

be 98°, In this orbit, however, only about 210 days would be available for
continuous viewing, assuming a 100 km critical atmosphere height; this
reduces to less than 30 days of continuous viewing in a 200 nmi orbit at
inclinations of 90°, Longer periods of continuous viewing would be possible

in higher-altitude orbits (above 500 nmi).



CONCLUSIONS--EARLY MISSIONS ARE
TECHNOLOGICAL STEPPING STONES

The emphasis in manned solar and stellar astronomy in the early time period
should be primarily directed toward conducting coarse surveys in the UV,
X-ray and gamma-ray and toward the development of operational capability
with manned vehicles. Ultimately, the highest probabiltity of significant
scientific return can be realized if the A'fM—follow—on missions are dirccted
toward obtaining a better understanding of the role and primary contributions
of man before large-scale commitments are made to the more sophisticated
facilities of the late time periods, These early missions would provide a
needed platform to answer the many technology-oriented questions upon which
future design will be predicated, such as those relating to design criteria and
operational techniques for space servicing operations, evaluation of candidate
operating modes, determination of man's role in data taking, and demonstra-
tion of precision pointing and control techniques, Based upon early mission
success, it can be anticipated that the first major long-term scientific facili-
ties fortastronomy which are capable of effectively utilizing man's working

participation would become available in the intermediate time period.

While the views presented herein may be somewhat optimistic and it is
recognized that achievements are more highly dependent upon budgetary than
upon technical limitations, the tremendous potential before us does indeed
stagger the imagination, Coupling man's capabilities with the vantage point
of space will p:fovide a dynamic and viable platform for unprecendented

opportunities to learn more of the universe and even, perhaps, of our eventual

destiny,
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