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Abstract

A brief sketch of the development of
the equations for a weighted lcast squares
estimator is given, the equations for both
collective and recursive estimators being
included. Four possible problem sources
that may be encountered in the application of
the estimator are identified. Various
“"guccess'' parameters are defined in an
attempt to predict the success with which
the mcethod has been applied. The applica=
tion of the estimation technique to the
problem of computing various error para-=
meters associated with the ST-124M
guidance platform is described and the
numerical results obtained using a manu-
factured data case are presented. These

- results are used to form conclusions about

the effectiveness of the '"suecess' para=-
meters and preferred approaches to the
problem of system evaluation using tech=
niques of estimation theory.

I. Introduction

Statistical treatment of data dates
back to the least squares techniques devised
by Gauss. From this beginning, very
sophisticated estimation techniques have
evolved. Since each of these techniques
requires a large number of numerical
coraputations, the development of high speed
computers has encouraged work in this area
ana in recent years a great number of

) P T

investigators have reported their work in
the technical literature. References 1-6
are representative of such reports.* The
basic idea in all these techniques is to take
a large number of measurements, with
attendant measurement inaccuracies, of a
particular set of values and from this
overdetermined system to compute the

set of values that best represents the

result of the measurement process. The
measurements involved can be either direct
measurements, where the parameters of
intcrest are measured or indirect measure=
ments where known functions of the para=
meters of interest are measured. There
are various ways of defining the criteria
that leads to the ''best'' estimate of the
parameters. This brief statement gives

a background for the definition of the
problem to be treated.

*The list of these works included in the
present work represent ones that have
become familiar to the authors. The
omission of any specific work from this
list is not intended to reflect the author's
opinion of its usefulness.



The Saturn Apollo IB and V vehicles
use the ST-124M platform as the heart of the
guiaance system. This platform provides
an inertial reference frame and accclero-
mecers {rom which intelligence for the
guidance computer is obtained. Certain
errors are associated with the platform that
lead to slightly inaccurate measurements
with the result that the vehicle will fly a
trajectory that differs from the design or
nominal trajectory. The measured devia-

tions of the trajectory from nominal are used

as indirect measurements of the error para=-
meters that cause the deviation and a ""best"
estimate of these parameters is computed,
"best'" in this case being defined as the
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method permite the ure of divact prefligii

weighted least squares estimate,

measurements of the error parameteors so
that all available information is used in
obtaining the estimate. However, problems
arise in this procedure that have not been
fully resolved. These problems can usually
be traced to one or more of the following
sources:

(1) The flight measurements and the
preflight measurements are
significantly different.

(2) The effects of two or more para=
meters on the trajectory are so
closely correlated that a near
singular situation develops in
their simultaneous computation.

(3) The sct of crror parameters
considered do not include certain
parameters that have a signific-
ant effect on the trajectory.

(4) The assumption of linear
reclationships between trajectory
deviations and the error para=-
meters is not valid.

The development of the equations
used in the computations will be outlined and
methods that attempt to eliminate some of
the above problems will be given. Finally,
numerical results obtained in a teat cane
will be reviewed.

II, Statistical Formulation7' B

The weighted least-squares adjust-
ments are made on the basis of observed
velocity deviations between the nominal
trajectory and the trajectory as determined
by the tracking measurements. A basic
assumption in the derivation which follows
is that the tracking data contains no
systematic errors, although thq equations
developed could easily be modified to_in-
clude the effects of such errors. Based
on this assumption the observed velocity
deviations are expressed mathematically
by a first order Taylor expansion about a
zero nominal value:

K\Tl = B3y F(; IﬂnTl (L)

whcremi is the vector velocity deviation
for time tj, BGi is a (3Xk) matrix of par=
tial derivatives of the velocity deviation
with respect to the error parameters (k is
the number of error parameters being con-
sidered), Kg is a (kX]) column matrix of
error parameters and nj is a (3X1) column
matrix representing noise contributions to
the measurements. The AVj are obtained
by differencing telemetry and tracking
measures of velocity for each time point.
Kg is defined by the error model equations
being used. The partial derivative matrix
B@Gj is computed using these equations.

The noise vectors over a given flight are
assumed to have zero mean and a_known
standard deviation. One further assump-=
tion simplifies the procedure greatly.

This assumption is that the three noise
components associated with a given mea-
surement are uncorrelated and that there
is no correlation from one measurement

to the next.

Measurements of the error parameters
arc made p;'ior to cach flight and these
measurements are included in the total
amount of information to be used in ob-
taining the best estimate of these error
parameters. These "a priori' measur-
ments are denoted by KG, which is a
(kX]) column matrix,



The weighted least squares estimate
is the particular set of values for the com-
ponents of K that minimizes the function

N _T . T o
F =iz=nliwi n + (KG-KGO) WKGO(KG'KGO) (2)

where W; and W are the weighting
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matrices for the flight measurements and
the preflight measurements respectively.
Further interpretation and discussion of the
weighting matrices are given in a later
section. Close examination of the function F
shows that-it is the sum of the weighted
squares of the noise components of the flight
meanurements plun a term whose effect is
to constrain the solution to lie ih a region
determined by the specific values of KGo and

w
KGo

The desired weighted lcast-squares
solution is obtained by determining the partial
derivatives BF/OKGi and setting these

expressions equal to zero. Such an opffration
is effected by solving for Ny from Equation
(1), substituting this expression into Iiquation
(2), and finally performing the required
differentiations. The resulting equations,
when solved for the error paramecters,
become

N 1

3 - =

e WAV W I 3
[(i:] (11 1 l) K(;() ((IO] ( )

ho = S,
where )
(= 5 -
Ck- =[E B, W;Bg)+ Wy ]
i=1 i o G

o

defines the covariance matrix of the guidance
.
error parameters.

The equations above will be referred
to as the collective least squares solution.
By considering these expressions using
N data points and N+l data points and making
liberal use of various matrix indentities, a
recursive cstimator can be obtained. The
equations for the recursive estimator take
the form

-~
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and -
C =C -F.B~ C i=1,2, ==~
Kg. Kg. G:¥K 3 8 &
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(6)

The subscript i used with K5 or CKG

indicates that data up to and including the
ith data point have been used in the
computations. For the other quantities
the subscript bindicates data for a partls
cular data point. It is noted here without
proof that equations 4, 5, and 6 can be
obtained by either the Kalman method or
by the maximum likelihood method if the
appropriate assumptions are made.

II. Required Data®

The equations of the previous section
are used to compute the weighted least
gquarcs cstimates of the error parame
The data uscd in the computations are
briefly described below.

Preflight Estimates and their Variances

The preflight estimates are obtained
from laboratory measurements and pre-
They are
represented by a (k x 1) columin matrix
where k is the number of paramecters to be
considered in the computation, KG is the

o

Fvunch pad measurements,

symbol used for the vector of preflight
estimates.

The variances of the preflight estimates
arc the squares of the standard deviations,
0; associated with the measurements. The
inverse of the variance is used to obtain the
weight matrix assigned to the preflight
estimates. This weight matrix is given by
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where C; are parameters used to change
WK in a convenient way.

Go
Delta Velocities and their Variances
The delta velocities, .,\Vi are three
conponent vertara abitained by dittaren ing
the velocity meapuremonta oblbained From
teletnetry data and from error free tracking
data. Thus, the entire velocily discrepancy

is assumed to be due to systematic errors in
the guidance system with random noise
errors superimposed. There is one such
vector for each time point for which data is
available.

_ The variances associated with the
AV's are obtained by estimating the width
of the envelope of the curve obtained when
the AV's are plotted against time. * The
variances are the squares of one~-half the
envelope width,  Variances are assigned to
regions of the curve. The weight matrix
assigned to a particular AV is the inverse of
the variance assigned the region of the AV
versus time curve from which that AV is
taken. The weights obtained in this way
are diagonal (3 x 3) matrices and are de-
noted by W;. '

Partial Derivative Matrices

The matrices of partial derivatives
BGi are computed using the error model

equations of the following section. The
nominal acceleration profile is used for this
purpose so the partial derivative matrices
are valid only as long as the true trajectory
does not differ greatly from the nominal,
However, for post flight evaluation the
partial derivatives are usually computed
using inflight measurements of acceleration
8o this problem does not exist.

Each B, matrix has dimensions 3 x k and
there is one such matrix for each time
point considered.

IV. Error Model Equation59

The error model equations relate
errors in acceleration to the various
errors associated with the guidance plat-
form. The most complete error model
consists of 30 error terms. However,
the trajectories flown by venicles using the
ST-124M platform during research and
development testing do not have significant
cross range accelerations so that terms
proportional to the cross-range accelera=
Other error soureen
have heen determined to be relatively '
Instgntficant, The result ta that the number
of error terms considered has been reduced
to 18. The error terms considered are
related to errors in the inertial accelera-
tion by the equations

tion are not considered,

M =B +Sa_+a (0 +06 t+
X x x X y z z

6z/k.vx+cz/9vy)

=B_+ = +M
Aay y Syay ax(,;z - +

ozt + Oz/i Vx + 6z/§vy)

ba =B +a (6 +6t+6 ,.V + )
z z x Y D £ y
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-a (6 +6 t+6. .t+06 .
Yy ox x x/x x x/y 'y
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(8)
wherela , Aa , Aa  are the errors in the
X y z
inertial acceleration compm ents; and the
system error parameters (which correspond
to the elements of the KG matrix) are
defined as follows:

Bi = bias error of the i-accelerometer

S, = scale factor error of the i-agccelerometer




8, = misalignment error associated with have the effect of the other K-2 parameters

rotation about the i-axis indirectly included.
6i = platform constant drift rate about the P ..is similar to .., but it is computed
i-axis from the WKG (=CKG-1) matrix and is a
M.. = non-orthogonality between i and j axes measure of the dependence of the itP para-
(positive if axes form an angle greater than meter on the j parameter when the other
90 degrees) K-2 parameters remain fixed.
6 i/ = platform '"g-sensitive' drift about the p'i' is designed to show to what extent the
i-axis due to acceleration parallel to the
j=axis effects of the ith parameter can be re-
presented by a combination of a}l_ other
The partial derivative elements are the time parameters. =
integrals of the coefficients of the error terms
in equations (8). The equations for the computation of the
corralation coollicients are:

The mathematical error model de-
scribed in the preceding paragraph was (CK )
derived for the ST-124 platform currently in pij = G ij 2
use on Saturn vehicles. A detailed [(CK ) (CK ) ] an
mathematical development may be found in G 1t G jj
Reference 9, in which small-angle assump-=-
tions were not made. Equations (7) rep-
present the re.sult of assuming small-angle ; (WK )“
errors and simplifying the results obtained P =- 1) 4
in Reference 9. 1 l(W ) (W ) ] 2

Kot Kgjj
V. Success Para.meters8
) and

It has been stated that certain
problems occur in the estimation procedure "
that have not been fully resolved. This p. = 1 - 1
section presents definitions of several & (CK ) (W__ )
""success'' parameters designed to determine G ii KGii
the success with which the platform er{ror
parameters have been estimated. The correlation coefficients should

indicate cases in which trouble is expected.
In the case where either of the correlation
coefficients is unity, no solution to the

Correlation Coefficients

Three different correlation coefficients are problem exists since some of the matrices

computed. These are: to be inverted will be singular. In cases
where the correlation coefficients are

Dij = ordinary correlation coefficient, large there is a possibility of compensating

i errors being introduced into the solution.

pij partial correlation coefficient,

i Figure-of-Merit Parameter
; = multiple correlation coefficient.

N

The figure-of-merit parameter is
Mi; is designed to show to what extent the designed to show the relative cffect of the
effects of the ith parameter canbe represented preflight data and the in-flight data on the
by the ceffccts of the j° parameter or vice golution for the crror paramecters. This
versa. However, the pij arc computed using parameter is denoted by (FM)i and is
the cpvariance matrix, CK , and as a result  computed according to

1
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(FM)i= x 100

(10)

There will be one such parameter for each
of the error model parameters. The values
range from 0 when the flight data have no
effect on the solution to 100 when the pre-
flight estimates have no effect. A value of
29. 3 indicates that the flight data and the
preflight data contribute equally. A value of
10. 6 indicates that the preflight estimates
contribute twice as much as the flight data so

that parameters with a figure-of-merit losa
than JO, 6 arve ndt canntdarad to he defap-
mined by the fhight diati, A value of b, 4

fndiciten that the (Hight data contributes
twice as much as the preflight estimates so
that parameters with a figure-of-merit
larger than 53. 2 will affect the solution even
though high correlation with other para-
meters exists.

These numerical values arc obtained
by noting the variance rclationship

1 1 1

2 gl s 2 .
g, total =@; flight + g preflight o

which holds when a single parameter is
cstimated or when there is no correlation
between parameters.  The factor (W 2o i

o 0 ii
is the preflight estimate of the standard
dcviati?n of the i” error parameter and
(CK ) 2 is the standard deviation resulting

G ii

from the estimation process.

VI. Numerical Results

In this section a numerical test case
is examined to show the approach followed
in trying to determine a method for
detecting and circumventing the previously
listed problem areas. For this test case a
set of typical numerical values for the'error
parameters was used with the partial
derivatives generated for a particular flight
to generate a set of manufactured AV's. The
nominal test casc was then computed using
these AV's and Bg's with typical values for

W and WKG The '"'a priori'' estimates

o
for the error parameters were chosen to be
one-tenth the values used in manufacturing
the AV's. The nominal case data was then
varied to determine the particular combina=-
tion of test data that yielded the closest
agreement with the known solution. The
success parameters were also computed
in an attempt to determine their
effectiveness.

Figures 1-4 show the behavior of the
estimates of four of the error para-
meters as the relative weight of the flight
data is decreased (this decrease in weight
ol the Tight data I8 acoomplished hy
decreoaning the value of the C parameters
ol equation 7)., Flgures H=8 show the
recursive development of the same para=
meters. One would suspect that for large
relative weighting of the flight data the
estimate would approach the true solution
while for small relative weighting of the
flight data the estimate would approach thr
"a priori" value assigned to the paramete
This is the obscrved behavior.

However, for intermediate values of
the relative weights the estimate is not
a weighted average of the extreme values
as onc would suspect but some of the
cstimates deviate sharply from this type
ol behavior. A carcful study of the values
ol the various success parameters gives
no indication that they can predict this odd
bchavior. Similar results are shown for
the recursive development of the para-
meters. These curves essentially show
the effect of varying the relative weights
of the flight and preflight data since
including more flight data in the computa-
tion reduces the relative effect of the
""a priori' data. This behavior is probably
due to a combination of the first two
problem areas given in the introduction,
but the success parameters apparently
do not provide a means for predicting the
behavior. Figures 9-12 show the behavior
of the multiple correlation, Pis and the
Figure of Merit, FMi' for a typical para~
meter. The behavior was the same for all
platform error parameters so the results
for only one case is nceded.



VII. Conclusion 5.
The failure of the success para-

meters to predict the behavior of the estim-

ates of the platform error parameters for this

ideal manufactured data case indicates that

they will be of little value in analyzing the

results of a real data case. However, the

results obtained do indicate that the estima- 6.

tion technique employed is valid under

certain conditions. These are (1) that an

adequate error model be used in the analysis

and (2) that the flight data and the preflight

data be used as two separate determinations

of the error parameters to be combined 7.

using engineering judgment as to their

validity, The problem of obtaining an

adequdate erraor nmodel van he molveald o a

given system by congtant reevaluation in

light of the rcsults obtained. The separa~

tion of the flight data estimate from the pre-

flight estimates can be solved by assigning

high relative weight to the flight data as was

done in this test case. 8,

The problem of correlation will
usually exist and probably can be solved by
some iterative method of fixing one para-
meter and solving for another using the
values of the correlation coefficients as a
guide. Further investigation of this problem 9,
was beyond the scope of the present work as
was the problem of non-linearity.
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Figure 1 - Estimate of BX as a Function
of Relative Weights
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Figure 2 - Estimate of SX as a Function
of Relative Weights
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Figure 3 - Estimate of -SY as a Function
.of Relative Weights
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Figure 5 - Recursive Development of BX
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Figure 9 - Typical Value of Multiple
Correlation as a Function
of Relative Weights
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Figure 11 - Typical Value of Figure-of-Merit
as a Function of Relative Weights
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