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ABSTRACT 

The Saturn S-IVB stage has a requirement f o r  orbi t ing around the ear th fo r  up t o  

4.5 hours with approximately 60 percent of i t s  i n i t i a l  propellant remaining a t  the 

end of the  coast (pr ior  t o  r e s t a r t ) .  Extensive analyses must be performed t o  

insure t ha t  t h i s  requirement i s  met. Both the maximum and minimum heat t ransfer  

r a t e s  a r e  important because the maximum ra tes  a f fec t  the hydrogen boiloff losses 

and thus t he  i n i t i a l  propellant loading requirements. The minimum ra tes  a re  

important because the  boiloff gases a re  used t o  maintain a minimum axia l  thrust  

l eve l  by venting the  gases continuously through a f t  facing nozzles. This provides 

f o r  a s e t t l i ng  of the  propellant throughout the o rb i t a l  coast and a l lev ia tes  the 

need f o r  periodically venting the tank under zero gravity. 

Described a r e  t he  significance of the following parameters on the  heat t ransfer  

r a t e s  t o  the  l iqu id  hydrogen: thermal conductivity, specific heat, density, sur- 

face emissivity and absorptivity, launch date and time, stage orientation and 

s t ruc tura l  "heat leaks." Tank surface radiative property e f fec t s  a re  shown where 

changes i n  solar  absorptivity are  s i x  times more significant than equal changes i n  

emissivity . 

*Chief, Flight Mechanics Branch 

=Group Engineer, ~ero/~hermod~namics Section 



CREDIT 

A l l  work discussed herein was the resu l t  of studies performed as  part of the 

NAS7-101 contract t o  the NASA Marshall Space Flight Center, Huntsville, Alabama, 

f o r  the development of the Saturn S-IVB stage. 



Paragraph 

TABU OF CONTENTS 

ABSTRACT . . . . . . . . . . . . .  
LIST OF ILLUSTFZITIONS . . . . . .  
INTRODUCTION . . . . . . . . . . .  
STAGE DESCRIPTION . . . . . . . .  
EFFECTS OF MATERIAL PROPERTIES . . 

Thermal Conductivity . . . .  
In te rna l  Insulation . . . . .  
Common Bulkhead . . . . . . .  
Aluminum Tank . . . . . . . .  
Density-Specific Heat Product 

Internal  Insulation . . . . .  
Common Bulkhead . . . . . . .  
Aluminum Tank Wall . . . . .  
Tank Surface Emissivity . . .  
Cylindrical Section . . . . .  
Forward Dome . . . . . . . .  
Solar Absorptivity . . . . .  

ENVIRONMEm FACTORS . . . . . .  
Aerodynamic Heating . . . . .  
Stage Orientation . . . . . .  
Launch Date and Time . . . . .  

STAGE DESIGN FACTORS . HEACT LEAKS 

Forward Joint  . . . . . . . .  
Helium Bottles . . . . . . .  
Feed and Chil l  Lines . . . .  

TOTAL STAGE IESULTS . . . . . . .  
CONCLUSIONS . . . . . . . . . . .  
REFERENCES . . . . . . . . . . . .  



LIST OF ILLUSTRATIONS 

T i t l e  Page - Figure 

1 

2 

3 

Saturn V Space Vehicle . . . . . . . . . . . . . . . . . . . . .  2 

Saturn V/S-IVB Stage . . . . . . . . . . . . . . . . . . . . . .  3 

In te rna l  Insulat ion i n  the  Saturn S-IVB Liquid Hydrogen 

Tank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

S-IVB Stage Common Bulkhead Jo in t  . . . . . . . . . . . . . . .  6 

Saturn V/S-IVB Cylindrical Tank Contribution t o  Propellant 

Heating Showing Variation with Insulat ion Conductivity . . . . .  8 

Maximum and Minimum Propellant Heating Rates Through t h e  

. . . . . . . . . . . . . . . . . .  LH2 Tank Cylindrical Section 9 

?&ximum and Minimum Propellant Heating Rates Through t h e  

. . . . . . . . . . . . . . . . . . . . . . . .  Common Bulkhead 11 

Saturn V/S-IVB Cylindrical Tank Contribution t o  Propellant 

Heating Showing Variation with pC of Bluminum Tank Wall . . . .  13 

Saturn V/S-IVB Cylindrical Tank Contribution t o  Propellant 

Heating Showing Variation with Tank Surface Emissivity . . . . .  15 

Saturn V/S-IVB Forward Dome Contribution t o  Propellant 

Heating Showing Variation with Dome Surface Emissivity . . . .  16 

Saturn V/S-IVB Effect  of Insulation Thickness on t h e  System 

. . . . . . . . . . . . . . . . . . . . . . .  Equivalent Weight 18 

Saturn V/S-IVB Cylindrical Tank Contribution t o  Propellant 

Heating Showing Variation with Solar Absorptivity. . . . . . . .  20 

Saturn V/S-IVB Cylindrical Tank Contribution t o  Propellant 

Heating During 4.7 Hour Mission Showing Absorptivity - 
. . . . . . . . . . . . . . . . . . . . . .  Emissivity Dependence 21  

Saturn V/S-1VB Cylindrical Tank Contribution t o  Propellant 

Heating Showing Variation with Orbi ta l  Vehicle Orientations . . 23 



Figure Ti t le  

15 Saturn V/S-IVB Cylindrical Tank Contribution t o  Propellant 

Heating Showing Variation with Launch Date and Time . . . . . . 25 

16 Saturn V/S-IVB hhximum and Minimum Total L@ Propellant 

Heating Rates . . . . . . . . . . . . . . . . . . . . . . . . . 28 

17 Saturn V/S-IVB bbximum and Mintmum Total LH;? Propellant 

Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 



1.0  INTRODUCTION 

The S-NB stage of the Saturn V space rocket (figure 1 )  has a requirement 

f o r  orbi t ing about the  ear th  (100 nautical miles ) f o r  up t o  4.5 hours 

(3 o rb i t s )  with approximately 60 percent of i t s  i n i t i a l  propellant (hydrogen 

and oxygen) remaining. This remaining propellant i s  required f o r  a second 

burn of its 200,000 l b  th rus t  engine which i s  t o  im- r t  escape velocity t o  

the Apollo spacecraft.  (The i n i t i a l  40 percent of the  propellant i s  consumed 

during t he  f i r s t  burn, resul t ing i n  an o rb i t a l  coast . )  

The S-IVB stage employs a unique system called continuous venting. Boiloff 

gases a r e  vented through a f t  facing nozzles t o  provide a continuous "g" l eve l  

a x i a l  th rus t .  This provides f o r  a continuous s e t t l i ng  of the propellant so 

t h a t  l iqu id  is  not vented overboard. In  order t o  maintain a minimum specified 

g-level, a minimum boiloff r a t e  must be maintained. This i s  unique i n  o rb i t a l  

propellant heating requirements where usually boiloff losses a re  minimized so 

that the  a f f ec t  on payload capabi l i ty  i s  minimized. This is  s t i l l  important, 

of course and it would be desirable t o  have the difference between the  maxi- 

mum and minimum boiloff r a t e s  be a s  small a s  possible while being s l igh t ly  

above the  continuous venting requirement. The purpose of t h i s  paper i s  t o  

discuss the fac tors  t ha t  affect  maximum and minimum propellant heating r a t e s .  

Discussed a r e  each of the major contributions t o  propellant heating from 

mater ial  properties, environmental effects,  and stage design e f fec t s .  

2 .O STAGE DESCRIPTION 

A cut-away view of the S-IVB stage i s  shown i n  figure 2 .  The tar& i s  divided 

in to  d i sc re te  regions f o r  convenience of analysis.  The largest  region i s  the 
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cy l indr ica l  sect ion which has an area  of about 1500 sq. f t .  It i s  

constructed of 2024-6 aluminum, machine milled t o  form an i n t e r n a l  waffle 

pa t t e rn  f o r  s t i f fen ing .  The r i b s  of the  waffle a r e  approximately 0.75 inch 

thick and the  s ize  of each waffle i s  approximately 10 inches by 10 inches 

square. The i n t e r i o r  of the  cyl indr ical  section i s  insulated with 1-inch 

thick reinforced polyurethane foam, cut t o  f i t  in to  each waffle segment. 

The foam density i s  a maximum of 5.5 lb / f t3 .  The insulat ion thickness i s  the  

minimum prac t ica l  value which w i l l  cover the  r ibs ,  thereby preventing d i r e c t  

heat t r a n s f e r  from the  tank w a l l  t o  the  l iqu id  hydrogen. A por t ion of an 

insulated tank i s  shown i n  f igure  3.  The forward dome is  made of chemically 

milled aluminum gores welded t o  form t h e  dome. Waffle s t i f fen ing  i s  not 

required so the  insulat ion thickness can be optimized with respect t o  heat 

t r ans fe r  considerations.  The common bulkhead i s  of honeycomb construction 

a s  shown i n  f igure  2 .  The core i s  an insulat ing f ibe rg las  honeycomb of 

4 1b/f t3  densi ty .  Either face i s  of aluminum construction, 0.032 inch th ick  

on t h e  hydrogen s ide  and 0.055 inch thick on the  l iqu id  oxygen s ide .  The 

com-non bulkhead joint  between the  two propellant tanks i s  shown i n  figure 4. 

An insulat ing block minimizes conductive heat t r ans fe r  through t h e  goint.  

Spheres, twenty-three inches i n  diameter, a r e  mounted inside t h e  tank. Each 

contains helium gas a t  approximately 3000 psia  f o r  pressur izat ion of t h e  

l iqu id  oxygen tank. These spheres each contribute t o  the  "heat leaks  ." Also 

a f fec t ing  the  heat leaks a r e  contributions from the joints  of the  forward and 

a f t  s k i r t  t o  t h e  hydrogen tank. Here heat i s  conducted from the  r e l a t i v e l y  

warm skin and s t r inger  s k i r t  t o  t h e  propellant, through the insulation.  h he 

problem of control l ing the  heat leak i s  minimized by use of i n t e r n a l  insula- 

t i o n  since t h e  joints  do not come i n  contact d i r e c t l y  with t h e  l iqu id  

hydrogen. ) 
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FIGURE 4 



3.0 EFFECTS OF MkTERIAL PROPERTIES 

3.1 THERMAL CONDUCTIVITY 

3.1.1 In te rna l  Insula t ion 

The thermal conductivity of the  in te rna l  insula t ion i s  one of the  most 

s ign i f i can t  parameters a f fec t ing  propellant heating. The maximum wetted 

a rea  of the  hydrogen tank i s  l a rge  (2500 sq. f t . )  and thus, the  area  f o r  

heat  t r a n s f e r  i s  large.  The thermal conductivity i s  great ly  affected by t h e  

d i r e c t  exposure t o  l i q u i d  hydrogen. Numerous t e s t s  have been conducted 

( ~ e f  erences a and b)  t o  quant i ta t ively  measure t h i s  parameter; however, the  

spread i n  data  i s  s ign i f i can t .  This necess i ta ted evaluating the  possible 

e f fec t s .  Figure 5 shows integrated propellant heating curves f o r  the  cyl in-  

de r  f o r  a wide range of insula t ion conductivity. A maximum value f o r  the  

conductivity i s  believed t o  be 0.035 ~ tu /h r - f t -OF while t h e  minimum value i s  

believed t o  be 0.025 ~ tu /h r - f t -OF based on t e s t  data  (Reference b ) .  ( A  nom- 

i n a l  value of 0.03 ~ tu /h r - f t -OF has been frequently used i n  a r r iv ing  a t  da ta  

presented i n  t h i s  paper.) This range i n  conductivity r e s u l t s  i n  a possible 

va r ia t ion  i n  in tegrated heat ing of from 620,000 t o  540,000 Btu. Figure 6 

shows heat ing r a t e  curves f o r  t h e  cylinder f o r  the  maximum and minimurn con- 

d u c t i v i t i e s .  The quan t i t i e s  from f igures  5 and 6 form t h e  p r inc ipa l  f ac to r s  

f o r  t o t a l  propellant heating a s  indicated i n  f igures  17 and 18. 

3.1.2 Common Bulkhead 

Shown i n  f igure  2 i s  a cutaway of the  S-IVB stage common bulkhead. This 

der ives  i t s  name because it i s  the  s ingular  separation between the  l iqu id  

hydrogen and l i q u i d  oxygen. The f ibe rg las  honeycomb core provides su f f i c ien t  



S
A

TU
R

N
 V

/S
-IV

B
 C

Y
LI

N
D

R
IC

A
L 

TA
N

K
 C

O
N

TR
IB

U
TI

O
N

 T
O

 
P

R
O

P
E

LL
A

N
T 

H
E

A
TI

N
G

 S
H

O
W

IN
G

 V
A

R
IA

TI
O

N
 W

IT
H

 
IN

S
U

LA
TI

O
N

 C
O

N
D

U
C

TI
V

IT
Y

 
E

X
IT

?
 

1S
T 

OR
BIT

--2N
D 

O
R

B
l

T
T

3
R

D
 O
R

B
IT

 

T
IM

E
 (H

O
U

R
S

) 



M
A

X
IM

U
M

 &
 M

IN
IM

U
M

 P
R

O
PE

LL
A

N
T 

H
EA

TI
N

G
 R

A
TE

S 
TH

R
O

U
G

H
 T

H
E

 L
H

2 
TA

N
K

 C
YL

IN
D

R
IC

A
L 

SE
C

TI
O

N
 

E
X

IT
 

TI
M

E
 (H

O
U

R
S)

 



insulat ing q u a l i t i e s  while exposed t o  a constant temperature d i f f e r e n t i a l  of 

approximately 1 2 5 ' ~  (70 '~) .  The equivalent conductivity i s  about 0.004 ~ t u /  

h r - f t  -OF. This value includes the  radiat ion between bulkhead faces,  conduc - 
t i o n  through the  c e l l  walls and conduction through res idua l  a i r  which may be 

present i n  the  c e l l s .  It i s  expected t h a t  such a i r  would be highly cryo- 

pumped, but even i f  present as  a gas it w i l l  have an extremely low conductiv- 

i t y  i n  t h e  temperature range of l iqu id  hydrogen and l i q u i d  oxygen. It i s  a l s o  

noted t h a t  even i f  gaseous a i r  i s  present the re  should be no s ign i f i can t  con- 

vection because of t h e  near zero-g environment during o r b i t a l  coast.  

The common bulkhead heat t r ans fe r  model incorporated t h e  honeycomb core, t h e  

a t t ach  jo in t  and the  lower (non-cylindrical) portion of t h e  hydrogen tank. 

This was done t o  a t t a i n  greater  accuracy i n  determining heat t r a n s f e r  i n  t h i s  

region. Both t h e  heat t r a n s f e r  r a t e  and the t o t a l  accumulated heat a r e  shown 

i n  f igure  7. 

3.1.3 Aluminum Tank 

The thermal conductivity of t h i s  s t ructure  var ies  somewhat with temperature, 

but has l i t t l e  e f fec t  on propellant heating since t h i s  conductivity i s  f a r  

g rea te r  than t h a t  of t h e  insulation. 

3.2 DENSTIT-SPECIFIC HEAT PRODUCT 

These two parameters a r e  t rea ted  together f o r  convenience because of t h e i r  

in te r re la t ionsh ip  i n  heat t r a n s f e r  calculations.  
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3.2.1 In te rna l  Insula t ion 

The densi ty  of the  insula t ion va r ies  l i t t l e  during production (5.2 rKf.3 l b /  

f t 3 ) .  The spec i f i c  heat has been measured and the  combination of expected 

var ia t ions  i n  these  parameters w i l l  have l e s s  than 1 percent change i n  pro- 

pe l l an t  heating. This i s  p r inc ipa l ly  due t o  t h e  small heat storage capaci ty  

and temperature change of t h e  insulation. 

3.2.2 Common Bulkhead 

The f ibe rg las  honeycomb has a low densi ty  (4.0 lb / f t3 )  and spec i f i c  heat 

(0.20 ~ tu / lb -OF) .  Variations i n  these parameters and the  small change in 

temperature due t o  constant contact with l i q u i d  hydrogen and oxygen on e i t h e r  

s ide  r e s u l t s  i n  an ins ignif icant  e f f e c t  on prbpellant heat ing ( l e s s  than 

1 percent).  

3.2.3 Aluminum Tank Wall 

The heat s tored i n  the  aluminum tank wal l  during ground hold plus the  addi- 

t i o n a l  heat which i s  added during ascent i s  p a r t i a l l y  radia ted t o  space and 

p a r t i a l l y  t r ans fe r red  i n t e r n a l l y  t o  t h e  l i q u i d  hydrogen. Since the  tank wal l  

maximum temperature i s  l e s s  than 150 '~  ( 3 3 g 0 ~ ) ,  radia t ion i s  g rea t ly  l imited.  

I n  f a c t ,  the  amount of heat t h a t  i s  t ransferred i n t e r n a l l y  i s  approximately 

two t o  th ree  times greater  than t h a t  radiated.  Arbi t rary  deviations i n  the  

densi ty  and spec i f i c  heat product of f10 percent and f20 percent were 

analyzed. Figure 8 shows the  r e s u l t s  of the  analysis  on t o t a l  accumulated 

heat.  
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3.3 TANK SURFACE ENISSIVlTY 

3.3.1 Cylindrical Section 

Figure 9 shows t h a t  increasing values of emissivity ( 6 )  s l i g h t l y  reduces the  

heating r a t e  i n  the  ea r ly  portions of the  mission ( f i r s t  o r b i t )  however, a s  

t h e  mission progresses, t h e  lower values of emissivity provide reduced 

heating. (IEPnese s tudies  were done t o  es tabl ish t h e  s ignif icance regarding 

t h e  coating selected f o r  the  outer surface. While spec ia l  pa in t s  (aluminum 

s i l i cone  having CY and 6 values both of about 0.25) could have been selected, 

t h e  minimum heating r a t e s  would be l e s s  than t h a t  required f o r  t h e  continu- 

ous vent system. For the  white paint current ly  i n  use, a value of 0.9 f o r  the  

emissivity (and 0 .3  f o r  the  absorpt ivi ty)  is assumed. Test ,data  now indicate  

t h a t  the  ac tua l  emissivity value ranges from 0.80 t o  0.90 which is equivalent 

t o  a s l i g h t  (considerably l e s s  than 1 percent) reduction i n  propellant 

heating. 

3.3.2 Forward Dome 

The forward dome is  a unique s i tua t ion  compare& t o  the cy l indr ica l  sect ion 

because the  basic  dome i s  a monocoque aluminum s t ruc ture  compared t o  t h e  

waffle pat tern construction of the  cylinder. This allowed f o r  the  insu la t ion  

thickness t o  be optimized whereas the  cylinder required a minimum thickness 

of 1 .0  inch t o  cover t h e  r i b s  of t h e  waffle by 0.25 inch. Since t h e  p r inc i -  

p a l  source of heat t r a n s f e r  t o  t h e  forward dome i s  rad ia t ion  from within the  

s t ruc ture  ( i n  t h e  infrared wavelength band) t h e  emissivity of the  outer dome 

surface was predominant i n  control l ing the  heat t r a n s f e r  t o  t h e  propellant i n  

t h i s  region. Figure 10 shows the  e f fec t  of emissivity on propellent heating. 
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The design value of 0.05 i s  achieved by a t taching a s ingle  layer  of 

aluminized mylar t o  t h e  outek surface of the  dome. It i s  noted t h a t  the 

i n i t i a l  stCeper slope i s  due mainly t o  the  energy s tored i n  the  dome s t ruc tu re  

a t  launch t rans fe r r ing  t o  the  propellant shor t ly  a f t e r  launch. The s i g n i f i -  

cance of t h i s  se lec t ion  on payload weight i s  shown i n  f igure  11. The term 

"equivalent weight" r e f l e c t s  both s t r u c t u r a l  weight (which is  equivalent t o  

payload weight) and propellant boi loff  (which becomes equivalent by multi- 

plying by a f a c t o r  of 0.43 t o  account f o r  the  f a c t  t h a t  the  propellant which 

i s  vented i n  o r b i t  does not have t o  be accelerated t o  escape veloci ty) .  The 

i n i t i a l  design consisted of 1 inch th ick  insula t ion and a standard high 

emiss ivi ty  paint  on the  outer  surface. The f i r s t  reduction was t o  consider 

t h e  use of a low emissivity coating ( i n  t h e  range of 0.02 t o  0.2). While 

t h i s  provided a subs tan t i a l  payload gain, a fu r the r  gain was a t ta ined by 

reducing the  insula t ion thickness. 

Variations i n  propellant heating from the  nominal design values a re  expected 

t o  be small s ince deviations from design value emissivity a r e  l i k e l y  t o  be 

small. The assumption up t o  t h i s  point has been t h a t  the  i n t e r i o r  of the  

forward dome i s  constantly o r  recurrent ly  wetted by propellant,  thereby 

absorbing near ly  a l l  of the  heat s tored i n  the  aluminum st ructure .  It i s  

possible,  however, t h a t  the  hemispherical tank segment w i l l  be v i r t ~ a l l y  f r e e  

of l i q u i d  because of t h e  venting th rus t .  Should t h i s  occur, the  o r b i t a l  

heat ing (see  f igure  10) would be reduced t o  near-zero. 

3.4 SOLAR ABSORPTIVITY 

The cy l indr ica l  sect ion of the  hydrogen tank i s  the  only portion of the  tank 

t h a t  i s  exposed t o  so la r  heating. This includes both d i r e c t  so la r  incident 
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energy a s  well  a s  the  albedo (ear th  ref lected so la r  radiat ion)  which was 

assumed t o  be 0.4. As  was the  case noted i n  paragraph 3.3.1, studies were 

i n i t i a l l y  conducted t o  determine possible surface coatings tha t  could r e s u l t  

i n  minimum heating ra tes .  However, too great a reduction could resu l t  i n  

minimum heating r a t e s  l e s s  than the minimum allowable f o r  the  continuous vent 

system. Figure 12 shows the e f fec t  of absorpt ivi ty  changes f o r  a constant 

emissivi ty  of 0.9. Figure 13 shows the combined e f fec t s  of emissivity and 

absorpt ivi ty .  It i s  noted tha t  the  absorpt ivi ty  i s  s i x  times more s ignif icant  

than equal changes i n  emissivity. 

The nominal design values a re  0.3 f o r  solar  absorpt ivi ty  and 0.9 f o r  

emissivity.  A r e a l i s t i c  range of absorpt ivi ty  values f o r  white paints  i s  

approximately 0.20 t o  0.40. The emissivity i s  i n  t h e  0.80 t o  0.90 range. It 

can be seen (f igure  13) t h a t  a s ign i f i can t  deviation from the  nominal propel- 

l a n t  heating may occur depending on which white paint  i s  selected f o r  the  

cyl inder  . 

4.0 ENVIRONMENT& FACTORS 

4.1 AERODYNAMIC HEATING 

The extent of aerodynamic heating of the  l iqu id  hydrogen, although substan- 

t i a l l y  l e s s  than the  e f f e c t  of i n i t i a l  energy stored i n  the  tank wall a t  

launch i s  s ignif icant .  Trajectory dispersions during ascent were considered 

with t h e  r e s u l t s  showing t h a t  t o t a l  dispersion e f fec t s  on propellant heating 

can be neglected so t h a t  only the  nominal ascent t r a jec to ry  need be considered. 
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4.2 STAGE ORIENTATION 

The S-IVB stage i s  nominally oriented i n  o r b i t  such t h a t  the  longitudinal 

ax i s  is p a r a l l e l  t o  the  veloci ty  vector. Also, t h e  same "side" of t h e  stage 

continuously faces the  ear th  except f o r  br ief  maneuvers. These conditions 

form the  reference point f o r  t h i s  study. Other possible or ientat ions  were 

considered i n  an e f f o r t  t o  determine where possible reductions i n  propellant 

heating could be made. The most obvious reduction was t o  a l i g n  the  longitudi- 

na l  ax i s  p a r a l l e l  t o  the  so la r  rays ( i n e r t i a l  or ientat ion)  so t h a t  d i r e c t  

so la r  incident radiat ion was minimized. This e f fec t ,  combined with other  

or ientat ions  a r e  shown i n  figure 14 and Table I. It i s  evident t h a t  s i g n i f i -  

cant reductions i n  propellant heating a re  possible by select ion of or ientat ion.  

Such a select ion,  however, imposes f l i g h t  constra ints  which might complicate 

t h e  maneuvers which a r e  required a t  in te rva l s  during the mission. Neverthe- 

l ess ,  t h i s  technique i s  worthy of fu r ther  consideration i n  order t o  determine 

t h e  nature and magnitude of the  associated problems. 

4.3 LAUNCH DATE AND TIME 

It was i n i t i a l l y  believed t h a t  differences i n  the  s o l a r  f l u x  resu l t ing  from 

the  many possible launch times would be s ignif icant .  This would be t r u e  f o r  

high a l t i t u d e  o r b i t s  where the  so la r  f l u x  is predominant, but a t  low a l t i t u d e s  

(100 n.mi.) albedo and ea r th  radiat ion a r e  a s  important as  so la r  radiat ion as  

shown i n  Table I f o r  Y = go0 and $ = OO. 

The change i n  heating r a t e  f o r  various launch dates  i s  not large, therefore,  

maximum conditions (winter noon launch) a r e  used. The possible extremes a r e  

shown i n  f igure  15 f o r  launch conditions resu l t ing  i n  maximum and minimum 
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s o l a r  exposure ( f o r  t h e  fixed incl inat ion angle). Propellant heating should 

not be considered i n  the  select ion of launch date  and time. 

5.0 STAGE DESIGN FACTOlSS - HEAT LEAKS 

Estimates of t h e  heat t r a n s f e r  r a t e s  through the  various heat leak paths have 

been made, based on a bes t  estimate of the  various fac to rs .  Therefore, only 

a s ingle  solut ion has been obtained, not maximums and minimums. Most of t h e  

fac to rs  tend towards the  maximum, which i s  unconservative f o r  t h e  minimum 

condition. However, since a l l  heat leaks  comprise l e s s  than 10 percent of t h e  

t o t a l ,  it i s  believed t h a t  the  e f f e c t  on minimum r a t e s  i s  within a few percent. 

5.1 FORWARD JOINT 

As mentioned i n  paragraph 2.0, t h e  forward jo in t  contr ibutes  t o  t h e  propellant 

heating by conduction from the r e l a t i v e l y  warm st ructure .  In  o rb i t ,  t h e  f o r -  

ward s k i r t  temperature cycles between 1 5 0 ' ~  (339O~) and - 2 3 0 ~ ~  ( 1 2 8 ~ ~ ) .  The 

temperatures of course vary, depending on whether o r  not t h e  s ide  of t h e  tank 

i s  exposed t o  o r  facing away from t h e  ear th  and sun. Minimum and maximum 

conditions a r e  both considered and the  r e s u l t s  form t h e  inputs  t o  a three-  

dimensional heat t r ans fe r  computer program which calculates  t h e  temperature 

gradients along t h e  s t ructure ,  through the  bolted joint ,  and i n t o  t h e  insula-  

t ion,  thus  resu l t ing  i n  a heating r a t e  t o  t h e  l iquid.  

5.2 HELIUM BOTTLES 

The eight  helium b o t t l e s  form a d i r e c t  heat shor t  by v i r t u e  of conduction 

through t h e  hydrogen tank. The one inch of insulat ion thickness extends up 

t o  the  neck of the  b o t t l e  and p a r t i a l l y  r e s t r i c t s  t h e  flow of heat .  



5.3 FEED AND CHILL LINES 

These two l i n e s  a r e  connected d i r e c t l y  t o  the  hydrogen tank, the  feed l i n e  

serving the  engine and the c h i l l  l i n e  providing hydrogen f o r  chilldown. 

Although the  l i n e s  a r e  vacuum jacketed, the  connection forms a heat path i n t o  

t h e  hydrogen. 

6.0 TOTAL STAGE RESULTS 

Combining together a l l  t h e  fac to rs  t h a t  contribute t o  uncer ta int ies  i n  the  

maximum and minimum propellant heating r e s u l t  i n  figure 16 and 17. Figure 16 

shows t h a t  the  heating r a t e  h i s to ry  var ies  approximately 70,000 ~ t u / h r  from 

maximum t o  minimum and t h a t  t h i s  r e s u l t s  i n  an approximate 300,000 Btu extreme 

( f igure  17) between maximum and minimum conditions a t  the  end of the  4.5 hour 

coast.  I f  under stagnant f l u i d  conditions a l l  of t h i s  heat were t o  vaporize 

the  l iqu id  hydrogen, the  uncertainty i n  t h e  quantity of f l u i d  l o s t  would be 

1500 lb .  While t h i s  is  an extreme condition, it does give the  reader a "feel" 

f o r  the  problem. 

The e f f e c t  of the  heat t r a n s f e r  on propellant boi loff  ra tes ,  tank pressure, 

u l lage th rus t ,  e tc .  could be t h e  subject of an e n t i r e  paper. In  approximate 

terms, t h e  maximum heating r a t e s  r e s u l t  i n  approximately 3,000 l b  of vented 

hydrogen or  7 percent of t h e  i n i t i a l  loading. The minimum heating r a t e s  

r e s u l t  i n  a predicted t h r u s t  l e v e l  of 2 x 10-5 g which i s  s l i g h t l y  above the  

design requirements. 



FIGURE 16 



FIGURE 17 



The S-IVB stages  a r e  wel l  instrumented t o  obtain da ta  f o r  t h e  v e r i f i c a t i o n  of 

the  analyses associated with t h i s  paper. It i s  expected t h a t  the  da ta  w i l l  

help t o  narrow the  band of propellant heating predic t ions  so  t h a t  bo i lo f f  

losses  a r e  minimized while yet  maintaining the  minimum propellant heat ing 

r a t e s  wi thin  requirements. 

( a )  Douglas Report No. SM-42545, Araluation of t h e  Saturn S-IV In te rna l  

Insula t ion i n  the  Eight-Foot Scale Tank, November, 1962. 

(b)  Douglas Report No. 234-47195, Improvement Program f o r  the  Saturn S-IVB 

LH2 Tank I n t e r n a l  Insula t ion ( t o  be re leased) .  
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