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Abstract 

The propulsion and the structure of a space 
vehicle form a feedback loop through inertial coupling 
referred to a s  the pogo phenomenon and experienced 
with the Thor , Titan, and Apollo-Saturn V space vehi- 
cles. Fortunately, the pogo oscillations reached a 
limit cycle before becoming destructive. However, in 
some cases,  vibrations were high enough to become 
intolerable to astronauts or  to cause undue acceleration 
loads on space vehicle components. Therefore, great 
efforts were made to analyze the stability situation and 
to eliminate pogo oscillations of the Apollo-Saturn V 
space vehicles. Several aerospace companies cooper- 

-ated with the Marshall Space Flight Center in solving 
the problem for the f irst  moon flight of the Apollo- 
Saturn 503 and subsequent launchings. 

This paper treats  the multiforce feedback, f irs t  
experienced in the Saturn V space vehicle, from the 
general viewpoint of multivariable feedback systems 
and demonstrates the application of the Nyquist plot. 
Pogo loop components, such a s  the propulsion system 
and especially the eigenvalue problem of the structural 
model, a r e  discussed. A comparison i s  made between 
the linearly unstable f irst  flight stage of the AS-502 
vehicle and one of the later vehicles, the AS-504, which 
was successfully stabilized by the addition of a helium 
gas accumulator to cushion the propellant. 

Introduction 

Self-induced longitudinal oscillations were ex- 
perienced within the past ten years on practically all 
large liquid propellant rockets: the Atlas, Thor , Titan, 
and finally the Saturn V. The rockets usually oscillated 
with their ends moving against each other, like a young- 
s te r  does on a pogo stick. The comparison led to the 
te rm "pogo effect" which can be interpreted a s  p r ~ u l -  
sion-generated gscillations. This classification may be 
too inclusive because i t  covers several phenomena 
which have different causes. Falling in this category 
a r e ,  for example, the pressure regulator feedback on 
the Atlas and the propulsion to structure feedback on 
the Thor, Titan, f i rs t  stage of the Saturn V,  and more 
.recently a so-called mini pogo on the second stage of 
the Saturn V involving only the center engine area. 

The pogo phenomenon found wide attention and 
was treated by several authors in publications and re-  
ports peaking around 1965. '+ 

The coincidence of the f i r s t  longitudinal vehicle 
mode and the f i r s t  propellant line mode was considered 
a s  the main cause of the pogo phenomenon. The possi- 
bility of the coincidence with line modes for higher 
resonances was explored, but the resonance amplifi- 
cation appeared to be negligible. Now, this assumption 
about the higher frequencies (10 to 30 Hz) has changed, 
and i t  i s  generally agreed that these frequencies de- 
serve a careful analysis. Modeling of the structure, 
tanks, and propellant feed lines led finally to the in- 
clusion of 30 resonances. There is approximately one 
resonance per I Hz frequency increment, in contrast 
to other cases, such a s  the attitude control systems, 
which usually have only a few significant resonances. 

The analysis demonstrated permits a survey of 
the stability status in a wide frequency range, but is 
restricted to a linear and time invariant model which 
cannot reproduce the limit cycle effect observed in 
flight. Most likely, the limit cycle was caused by 
a tuning/detuning of time variable resonances (pre- 
dominant on the f irst  flight stage, S-IC), a non- 
linear loop gain which decreases a t  higher ampli- 
tudes (well pronounced on the second stage, S-I.), 
o r  possibly both. In most cases,  the pogo oscilla- 
tions had a football-shaped envelope, building up 
slowly like a slightly unstable linear system before 
damping out. 

During the analysis of the Saturn V pogo effect, 
it became clear that the inboard and the outboard 
rocket motors moved very independently because of 
sufficient structural flexibility in the thrust frame. 
The multiforce feedback required multivariable loop 
analysis instead of the single loop approach. This 
condition was contrary to the pogo effects of earl ier  
vehicles and the attitude control case in which only one 
feedback force had to be considered. The pogo oscil- 
lations were finally eliminated for the f i r s t  flight stage 
of the Saturn V vehicles beginning with the f i r s t  moon 
flight, the AS-503.7 Stability was attained by 
placing a helium accumulator near the lox pump 
inlets where it attenuated propellant pressure 
oscillations. 

-- 
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The detailed discussion in this paper of the pogo 
phenomenon is  initiated with a simple model to illustrate 
important pogo loop components. The following sections 
present the propulsion system equations, the eigenvalue 
model of the structure, and finally the pogo loop in a 
matrix form including the stability analysis of multi- 
variable systems. The stability of such complex sys- 
tems i s  proven by a single Nyquist plot. 

Simplified Pogo Phenomenon* 

Before plunging into the complexity of the prob- 
lem, it i s  very instructive to study the simple model 
shown in Figure 1. This model has all the essential 
ingredients of the pogo phenomenon: propellant mass ,  
cavitation stiffness at the propellant pump inlet, orifice 
effect of pump inlet, vehicle mass,  and the thrust's 
sensitivity to propellant pressure a t  the pump's inlet. 

The pogo loop can best be described through 
the involved components, starting with a small thrust 
change T which forces the vehicle and propellant 
masses to accelerate. The accelerated propellant mass,  
here the liquid oxygen in the tank, exerts a pressure 
force onto the cavitation stiffness K which transmits 

S 

it to the pump's inlet. This pressure affects the pro- 
pellant's flow which feeds the combustion in the rocket 

SPACE VEHICLE 

motor; thus the thrust is changed by this pressure. . 
Then the whole process starts  again in a feedback 
fashion. 

The propulsion system's sensitivity is simply 
described by a constant gain E with Ps, the propel- 
lant force, and T,  the thrust. Actually all variables 
represent small variations about a quiescent point. 
Also introduced are  an external disturbance force f CAVITATION STIFFNESS 
at the thrust point and the force F which accelerates 

S 
OF PUMP INLET 

the vehicle. The equations are  

P E = T  ( 1 )  
S 

F = P  ' E + f  (2 )  
THRU 

s s GAIN STRUCTURE MASS 

The structural model, which includes the propellant, 
cavitation, and orifice effect, relates the propellant 
force Ps to force F (a l l  equations are  given in 
Laplace transform) : 

F 
P = s FIGURE 1. SIMPLIFIED POGO LOOP MODEL 

The closed loop equation results from equations (2 )  
and ( 3) : 

*The nomenclature is  listed on pages 13 and 14. Equation (4) gives the response of the propel- 
lant force Ps to a disturbance f . The thrust response 



can be obtained by substituting equation (4) into 
equation ( I )  ; however, this is of no consequence for 
the stability analysis because the gain E is assumed 
constant. 

The zeros in the denominator of equation (4) 
indicate whether the system is stable or unstable. Sta- 
bility requires that the roots have negative real parts 
which can easily be determined in this simple second 

m 
order system. It results that the constant I+= - E 

S 

must be positive for stability; i. e. , gain E is limited 
by the stability criterion 

The engine's gain should not be too high; in fact, 
i t  should be less than one if the mass ratio of vehicle 
structure to liquid oxygen is assumed to be negligible. 
All Saturn V vehicles have an E gain above one, 
leading to a potential ttpogolt stability problem. How- 
ever, i t  must be emphasized that this analysis, which 
is overly simplified, is  given for illustration purposes 
only. One of the simplifications is that the total pro- 
pellant mass is at the pump inlet, while in reality only 
a small mass portion presses against the inlet. Another 
simplification is that the vehicle is only one mass 
instead of a resonant body with many resonances. A 
reduction of the gain E below one would be ideal, but 
for practical reasons other means are  used to make 
the system stable7 (see  the He accumulator on Fig. 2 ) .  

FIGURE 2. INTERFACE OF PROPULSION & VEHICLE STRUCTURE 
( Cross-Bar on Line, + , Indicates Pressure Force) 



Propulsion System 

The essential elements of the propulsion system 
are  the centrifugal pumps, the engine's combustion 
process, and the cavitation forming at the pump's intake. 
The centrifugal pumps feed the rocket engines with pro- 
pellants such as liquid oxygen for oxidizer and kerosene 
or  liquid hydrogen for fuel and contribute most of the 
dynamic behavior involved in pogo oscillations. The 
dynamic behavior of the engine's combustion process 
is far above the frequency range; therefore, i t  is 
practically a constant gain figure. Both of these effects 
are  described by engine transfer functions with the pro- 
pellant pressure forces at the pump inlets as inputs 
and the propellant flows and the thrust as outputs 
( Table 1) . The cavitation forming at the pump's 

The interface variables of the pogo loop are  
depicted in Figure 2 and with more detail in Figures 
3 and 4 .  The propellant flow is proportional to velocity 
and, consequently, to propellant displacement ( Figs. 3 
and 4). The pump inlet acts like an orifice with some 
cross coupling between the fuel and the lox side as  
expressed by the vector equation 

All variables are  actually small variations 
about an equilibrium point and the coefficients result 
from linear approximation. 

TABLE 1. F-1 ENGINE TRANSFER FUNCTION 

intake produces a cushioning effect for the propellant Equation (6) relates the lox and fuel forces 
in the feed lines, and greatly influences the propel- P and P to the relative displacements y 
lantls resonances. Formation of the cavitation depends L F Li- 

' ~ 2  and ' ~ 1  - ' ~ 2  
of the lox and fuel propellant. on temperature, pressure, and velocity differences 

between the intake flow and the pump speed. The engine flow matrix is defined by Q which is 
equivalent to the reciprocal dashpot D -' shown in 
Figure 1: S Because of great difficulties in the dynamic 

analysis of the propulsion system, i t  was necessary 
to find the engine transfer function and the so-called 
cavitation stiffness4 through pump flow tests and cap- + (::[ :::) = Q tive engine firings. It was also necessary to restrict 
the modeling to the linearized type because of the 
difficulties in obtaining nonlinear models. 

a v ~  
- a P ~  = qLL[E] 

a v ~  
=qLF[E] 

a v ~  -- 
apF - qFL[$] 

av F - -  
a P ~  - qFF [g] 

a T 
- =gL[+] 
a P ~  

aT 
- = g F k ]  
a P ~  

0. 94 . 1 r 5 (  i + SO. 67 . 10-1 1 
(1  + SO. 153) (1 + SO. 229 . 1 0 7  

0.225 - ( 1 - SO. 533 . lo-') 
( 1 + SO. 164) ( 1 + SO. 69 . lo-') ( 1  + SO. 307 . lo-' + sZO. 62 . 

- 

-0.307 . ( 1  + SO. 514 lo-') ( 1  - SO. 355 . 
( 1 + so. 172) ( i + so. 132 10-1) 

0.126 - ( 1 + SO. 45) ( 1  + SO. 144 . lo-') 
( 1 + SO. 22) ( 1 + SO. 165 . lo-') ( 1 + SO. 356 . lo-') 

5.55 (1 + SO. 512 . lo-') 
( 1 + SO. 16) ( 1 + SO. 226 . 10") 

-1. 12 ( 1  - SO. 857 . lo-') ( 1  + SO. 388 . 
(1  + SO. 168) ( 1  +SO. 288 lo-') ( 1  +SO. 222 . lo-') 



Y ~ 2 0 1 ( Y ~ 2 )  

FIGURE 3 .  ENGINE INTERFACE MATRIX Sol; 
SI AND So2 ARE SIMILAR. (The negative stiffness 
cancels the stiffness of the structural model.) 

FIGURE 4. ENGINE FLOW MATRIX Q (-) 
AND ENGINE THRUST (- *-) FLOW DIAGRAMS 

The components of Q are  given in Table 1. 
The propellant forces P and P are  directly 

L F 
related to the rocket engine's thrust by the relation 

The thrust gain is defined by a column vector which is 
similar to the gain E of equation ( 1) : 

(t:) = 

The components of G result from the pump 
flow characteristics and from the engine's combustion 
(Table 1).  All variables are  given as row vectors 
because this form corresponds well with flow diagrams. 

The flow matrix Q describes the orifice-like 
effect of the lox and the fuel pump inlets for one engine; 
the springs K and K represent the cavitation at the 

L F 

pump inlets for the lox or the fuel side, respectively 
(Fig. 3). 

The propellant feed lines are  terminated by the 
cavitation effect in series with the orifice effect of the 
pumps. It is practical at f irst  to neglect the orifice 
effect and to terminate the feed lines with the cavitation 
stiffness only (K for the lox side and K for the fuel LN FN 
side). This permits the use of an energy-conserving 
system from the vehicle's structure down to the engine 
pump inlets. The resonances are  then more realistic 
than the resonances of open-ended line models which 
are  another possibility to model the structure; however, 
the terminated line case helps the interpretation and 
gives a better selection of significant structural reso- 
nances. 

A comparison of Figures 2 and 3 shows that the 
cavitation stiffnesses K and K of the structural 

LN FN 
model ( Fig. 2) a re  parallel to the negative stiffnesses 
-KLN and -KFN ( Fig. 3) of the engine model. This 

permits an exchange of components when joining the 
structural model with the engine model. It actually 
replaces the cavitation stiffnesses K and K 

LN FN 
by a series arrangement of the cavitation stiffnesses 
K and K with the pump orifice effect. Thus the L F 
actual system is restored when the energy-conserving 
structural model is connected with the engine model. 

The relative displacements y 
L2 - Y L ~  and 

' ~ 2  - ' ~ 3  
shown in Figure 3 are  related through the 

cavitation stiffness to the propellant forces P and P 
L F 

for the lox L and the fuel side F , respectively: 

The cavitation matrices are defined by 

The external forces FL and FF (Fig. 3) act 

on the structural model (Fig. 2) and are  formed after 
adding the effect of the negative stiffnesses -K LN and 



The relative deflections yL1-yL3 and y F1- 

' ~ 3  
are  directly related to the propellant forces P 

L 
and P after adding equations (6) and ( 10): 

F 

Equation ( 13) is now substituted into equation 
( 12): 

(P P )[I-(Q+K-')K~] = ( F  F ) 
L F L F 

( 14) 

The matrix of this equation is defined by 

The rigid connection of the outboard engine 
allows all outboard engines to be treated as  one large 
engine; therefore, the indices 01 and 02 are  inter- 
changed with the index 0 . Similarly, the pump inlets 
on the lox and fuel side practically move together. 
Consequently, the indices become L10 = FlO = O 
and L1I = F1I = I .  Another index simplification is 
introduced for point 3 ( Fig. 3) wheresve now have 
L30 = LO, F30 = FO, L31 = LI, and F31 = FI. 

The relative deflections are  expressed in forms 
of the new indices: 

= - ( A Y ~ ~ A Y ~ ~ A Y ~ ~ ~ Y ~ ~ )  - ( 18) 

If all engines are  equal, then Q + Kfl 

'- (Q + K-')/4 for four outboard engines. 

Vehicle Structure Dynamic 

The elastodynamic behavior of the space vehicle 
is  given by discrete masses and springs which describe 
the inertia and elastic behavior of the structure, tanks, 
lines, and liquid propellants. 

The coupling of lateral motions into the longi- 
tudinal direction was assumed to be small because of 
the vehicle's symmetry; therefore only the longitudinal 
response is considered here for the pogo loop analysis. 

The displacement of each free mass movement 
is taken as a component of a displacement vector y 
(row vector). Similarly we define a force vector F 
whose oomponents are forces on each free mass. Fur- 
ther we denote a mass matrix M and a stiffness matrix 

Ke . Thus the following vector equation is obtained in 

Laplace transform for the system initially at zero-rest 
( initially without displacement or velocity) : 

Equation ( 19) relates the displacement vector y to the 
YLII  - Y L31 = YI - Y LI = -AyLI vector F. 

The degrees of freedom are  often too high (up 
to hundreds) to permit a direct use of this equation; 
therefore, an eigenvalue analysis is employed to find 

All forces that act on the structure a re  now 
significant resonances which are then used to reduce , 

arranged in a vector form by inserting definitions ( 9) 
the degrees of freedom. and ( 15) into a partitioned matrix [ see also equations 

( 8 )  and ( 14) I :  
A linear transformation y = z . U, a postmul- 

tiplication of equation (19) by Uf, and a square rbot 
factorization of the mass matrix M yield 

1 1  

ZUM' (s2  I + M-+ K M-") M"Uf = FUf , (20) 
e 

= ( F  F T F  F T )  (17) 1 
LO FO 0 LI FI I where UM" is considered as the eigenvector matrix 

1 1 

If all engines are  equal, then Co = C and of the symmetric matrix M-" K M-" . Its eigenvalues 
I e 

Go = G s2 are  real because of the symmetry and are  distinct 
I ' because a mechanical structure is represented. The 

latter ensures that the eigenvectors (rows of UM" ) are  

Equation ( 13) relates the force vector ( P P ) 
orthogonal to each other. "9 The orthogonality helps 

L F to invert the matrix on the left of equation (20) by 
to the relative displacements of definition (16). This 
is also expressed in a partitioned matrix form: 



forming the diagonal matrices UMU' and UKU' which 
are  denoted as the generalized mass matrix and the 
generalized stiffness matrix, respectively. 

The determination of the eigenvector matrix 
1 

UM' from the matrix M-'K M-' yields the matrix 
e 

U. Equation (20) is diagonalized by the mode shape 
matrix U: 

z ( S~UMU'  + U K ~ U ' )  = FU' (21) 

This matrix replaces matrix (23) and is used 
for the structural model equation 

Pogo Loop System 

Equations ( 17) and ( 18) represent the propulsion 
system, and equation ( 25) represents the vehicle struc- 
ture. A substitution within those equations results in 
the pogo loop equation, but first the mode shape matrices 
U' and U , equation (25), are described in more detail. 

Equation (21) is easily inverted and then changed to an Equation ( 18) needs only four mode shape com- 
equation explicit in y : ponents; therefore, the mode shape matrix U is reduced 

to the following form: 

y = FU' ( s2 UMU' + UKeUt) -i u (22) U =-(AYLoAY AY AY ) 
FO LI FI 

(26) 

Note that the generalized mass matrix UMU' depends 
1 Equation ( 17) has only six forces on its right 

on free scale factors of the eigenvectorsof UM' which, side; therefore, the mode shape matrix U1 is reduced 
for example, could make UMU' a unit matrix. Often, to the six terms which multiply with the six force com- 
however, it is preferred to normalize the mode shape ponents: 
vectors of matrix U. The inverted matrix of equation 
(22) appears as  follows: 

( S ~ U M U '  + U K ~ U I )  = 

0 0 . . 

= 
1 

0 
All components of this matrix are  row vectors 

0 . . which have themselves for each resonance frequency 
(s2+wb)m3 one component. The components of the U matrix are  

. . )  . the same except they are  transposed, making them 
( 23) column vectors. 

The pogo loop equation is obtained by substitut- 
Observe that the resonances are the poles at 

ing equation ( 17) into equation ( 25) and then equating 
s = * jwi ,  i = 2 , 3  ... . the result with equation ( 18). Besides manipulating the 

equations, it is  helpful to introduce external disturb- 
The small damping of the vehicle i s  simply ance forces (Do,  D ) at the outboard and the inboard 

introduced by adding damping to each second order poly- I 
nomial. Equation (23) is now augmented and redefined: engine group to define an input-output relation: 



This equation represents the pogo loop a s  it i s  
given in Figure 5. 

Pogo Loop Stability 

The pogo loop is  a case of multivariable feedback 
in which the feedback variable i s  not a scalar but a vector. 
The feedback i s  given by a matrix with plenty of cross- 
coupling a s  shown in Figure 5. The elements of the 
matrix a r e  transfer functions which a r e  more compli- 
cated than the single s operator in the diagonal elements 
of a state transition m a t r i ~ . " " ~  However, because the 
matrix of equation (29) is  considerably smaller than that 
in the s ta te  space approach, equation (29) i s  more suit- 
able for a stability analysis. 

The linearity and the time invariance of the model 
permitted the inclusion of many resonances which a r e  
relatively dense in the pogo case. The approach appears 
to be well justified to predict stability because the un- 
stable buildup of actual pogo oscillations resemble oscil- 
lations of slightly unstable linear systems and because 
the vehicle resonances change relatively slow during 
flight. The nonlinearities a r e  assumed monotonic without 
any abrupt changes a s  in the case of bang-bang control 
systems. 

The understanding of matrix feedback stability 
has improved in recent years as reflected in the litera- 
ture. 1 3 9  1 4 9  l5 Erroneous cri ter ia  were abandoned and 
the approaches seem to have become simpler. The 

method used here  follows the cr i te r ia  presented by other 
 author^,'^*^^ but selects the special case where the 
matrices have only stable elements. This approach per- 
mits great  simplifications for the proof and the applica- 
tion. Generally, the method becomes remotely com- 
parable to a state space type of stability analysis if the 
Laplace transformed matrix s I  is  replaced by a matrix 
with stable transfer function elements. 

Lack of knowledge in treating matrix feedback 
cases has often led to simplification which caused d o u b ~  
about the validity of the analysis. For example, Nyquist 
plots a r e  sometimes obtained by opening one loop only 
while other loops remain closed. The interpretation of 
the stability margins then becomes obscured, mainly 
because of the unpredictable influence of the closed 
loops in the "open loop system. The stability status of 
the closed loops must then be analyzed by additional 
Nyquist plots o r  root finding routines, thus producing 
several stability margins which cannot be combined o r  
expressed by a single term. Variation of parameters 
can help to find the stability limit, but this method still 
does not preclude a possible pole-zero cancellation if 
only the open loop plot i s  evaluated. 

The method presented here treats  the problem 
from the closed loop standpoint. Equation ( 29) is  now 
simplified by using the following matrix and vector 
definitions: 



FIGURE 5. POGO LOOP FLOW DlAGRAM 

(32)  This equation is typical of any linear and time invariant 
feedback case in which we relate disturbance D to the 
loop variable P . A matrix inversion expresses P 
explicitly: 

( 33) 

Equation (29) now changes to P = D .  B .  adj ( A ) / I A I  



The loop variables behave stably if the elements 
of the matrix B- adj (A) / 1 A \ a re  stable. This i s  
certainly true if we can show that each element of the 
matrix B. adj (A) / \ A  1 has a Nyquist ploti6 'I7about 
the origin which indicates stability. This definitely i s  
not an open loop concept but checks stability without 
loosing sight of all poles and zeros of the system. 

The system is  assumed to be Ifobservable and 
controllable" because all involved elements of the pogo 
loop a r e  retained in the closed loop approach and no 
pole-zero cancellations occurred. 

This stability criterion i s  necessary and suffi- 
cient for the input/output relation between a disturbance 
and the feedback vector variable. However, the method 
needs too many plots; e.g., one for each element of the 
matrix, not to mention that the zeros of the elements 
must also be known (encirclements = no. of zeros - no. 
of poles). 

One plot would be more convenient, preferably 
from the determinant 1 A [equation (35) 1 . Then, how- 
.e+er, we must avoid any pole-zero cancellations within 
the determinant and must check for possibly unstable 
poles of the classical adjoint of A .  l5 The poles of the 
matrix B must also be checked, but this i s  a separate 
stability problem. All these problems a re  eliminated 
when unstable poles in the elements of the matrices adj 
(A) and B a re  avoided. The statement can be reduced 

P 
to the requirement that only matrices A and B must be 
stable since the poles of the adjoint of matrix A a re  a t  
most identical to the poles of matrix A. 

The state space approach demonstrates how 
unstable poles can be avoided when formulating the prob- 
lem. Matrix A becomes A = s I  - H ,  where H is  the 
constant matrix of the state vector equation j.= y ~ + u . i i ' 1 2  
Matrix A assumes, in this case,  its maximally possi- 
ble size,  but for linear and time invariant cases the 
system can be described by a much smaller matrix A 
whose elements a re  complicated transfer functions. As 
long a s  these elements are  stable, they a re  admitted. 
The object i s  to keep matrix A as  small as  possible. 

The stability of the elements of matrices A and 
B [ equations (30) and (3i)j follows from the stability of 
their building blocks: matrices Q ,  K ,  C, G, and a-I 

[ Table i , and definitions (7) ,  (9), ( i i ) ,  (15) , and 
(24)] . These building blocks a re  connected with addition, 
matrix multiplications, and insertion in matrix partitions. 
Therefore, the poles of the final matrix elements a re  the 
poles of the building blocks which apparently have only 
stable poles. 

Now a Nyquist plot about the origin from 
the determinant 1 A is  computed. * The number of 
the clockwise encirclements equals the number of 
unstable zeros of 1 A 1. 

Two examples a re  given for f irst  flight stages 
of the Saturn V vehicle at 120 seconds of flight time: 
the AS-502 which is  linearly unstable at 5 Hz and the 
AS-504 which i s  stabilized by a helium accumulator 
a t  the lox pump inlets (Figs. 6 and 7 ) .  The "a" fig- 
ures a re  the nominal cases,  while the "b" figures 
show the plots for half of the lox pump/thrust gain 
(gL/2). Such variations a re  used to find the gain mar- 
gin; e. g. , by linear extrapolation we find that the 5 Hz 
range i s  approximately 5 db unstable for AS-502 while 
the same frequency range becomes 6 db stable for 
AS-504. The accuracy of the margin prediction can be 
increased by plotting new gain cases in an iterative 
fashion. Thus we can find margins with any degree of 
precision while the plots always indicate exactly whether 
the system is  stable or unstable. 

One may imagine a -i point at the plot's 
origin but note that the loop gain i s  not a simple factor, 
merely one parameter or  several dependent parameters 
which a re  buried in a loop-type transfer function. 

Conclusions 

Propulsion-generated oscillations had a history 
of occurrence up to the Saturn V vehicles in which an 
accumulator was successfully used for stabilizing pogo 
oscillations of the f irst  flight stage. A particular prob- 
lem, not experienced before the Saturn V ser ies ,  was 
the multiple feedback of two essentially independent 
moving thrust forces and a large number of participat- 
ing vehicle resonances. 

The stability analysis shown appears very use- 
ful for complex systems or systems with matrix feed- 
back. The concept of closed loop analysis i s  empha- 
sized a s  a means to analyze stability with an inverted 
transfer function matrix. The pogo loop analysis of 
the Saturn V space vehicle demonstrated that a single 

. Nyquist plot about the origin can advantageously be 
used to prove stability of a multivariable feedback 
system. 

*The programing effort of Mr. W. F. Crumbley of 
MSFC's Computation Laboratory is  gratefully 
acknowledged. 
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2x2 cabitation stiffness matrix for eigen- 
value wodel 

Nomenclature 
\-- 

cavitation stiffness on simplified pogo 
model 4x4 pogo loop feedback matrix A 

adj A 

B 

C 

4x4 adjoint of matrix A LOX 

M 

liquid oxygen oxidizer 

2x4 matrix coupling disturbance forces mass matrix of eigenvalue model 

4x4 matrix relating interface forces to 
propellant forces, C for inboard engine, 

I 

structural mass of simplified pogo model 

lox mass of simplified pogo model and C for outboard engine group 
0 

generalized mass of eigenvalue model 
1x2 disturbance force row vector 

1x2 propellant force variation vector 
disturbance force a t  inboard and outboard 
engine group, respectively propellant force variation of fuel side, 

PFI on inboard, and P on outboard 
FO dashpot constant of simplified pogo model 

propellant force variation on lox side, 
PLI on inboard, and P on outboard 

LO 
thrust gain constant of simplified pogo 
model 

propellant force variation in simplified 
model 

disturbance force on simplified pogo model 

vector of external forces on eigenvalue 
model 2x2 engine flow matrix 

flow matrix element from fuel force to 
fuel flow and to lox flow, respectively interface force on fuel feed line, F 

FI 
for  inboard, and F for outboard 

FO flow matrix element from lox force to 
fuel flow and to lox flow, respectively 

interface force on lox feed line, F- - 
L1 

for inboard, and F for outboard LO 
s Laplace operator 

u 
total force of simplified pogo model 

mode shape matrix or transformation 
matrix of eigenvalue model 

2x1 thrust gain matrix, G for inboard, I T 
and G for outboard 

0 

thrust force variation on simplified pogo 
model 

thrust force variation on inboard and 
outboard engine group, respectively thrust gain for fuel and lox side, respec- T ~ '  To 

tively 

constant matrix of state vector equation 'F"L 
fuel and lox velocity, respectively 

identity matrix Y displacement vector in eigenvalue model 

2x2 cavitation stiffness matrix, K for I F 
inboard, and K for outboard 

0 

fuel displacement upstream of cavitation 
stiffness, yFI for inboard, and yFO for 

outboard 

stiffness matrix of eigenvalue model 
YF I 

fuel pump displacement; y for lox 
L1 

cavitation stiffness on fuel pump inlet and 
lox pump inlet, respectively ' ~ 2  

fuel displacement downstream of cavitation 
stiffness; y for lox 

L2 



' ~ 3  
fuel displacement upstream of cavitation 
stiffness; yL3 for  lox Fashbauch, R. H., and Streeter ,  V. L. : 

Resonance in liquid rocket  engine systems.  
Applied Mechanics Fluid Engineering Confer- 
ence (American Society of Mechanical 
Engineers) ,  Washington, D. C. , June 7-9, 
1965, 

YI* Yo inboard and outboard engine displacement 
respectively 

Y~ 
lox displacement upstream of cavitation 
stiffness, yLI fo r  @board, and y fo r  

LO Rose, R. G. , Staley, J .  A., and Simson, A. K. : 
A study of system-coupled longitudinal insta- 
bilities in liquid rockets ,  pa r t  1-analytical 
model. Report by General Dynamics/Convair, 
San Diego, Cal . ,  September 1965. 

outboard 

AY =Y -Y 
F I  FI  I 

inboard fuel mode vector difference 

fuel mode column vector upstream of 
YF1' YFO 

inboard and outboard cavitation stiffness, 
respectively (one  component per  resonance) 

Rubin S. : Longitudinal instability of liquid 
rocket due to propulsion feedback ( Pogo). 
Journal of Spacecraft and Rockets, vol. 3, 
August 1966. 

AYFo=YFo-Yo outboard fuel mode vector 
difference Worlund, A. L . ,  Glasgow, V. L . ,  Norman, 

D. E. , and Hill, R. D. : The reduction of 
pogo effects by gas injection. ALAA Second 
Propulsion Joint Specialist Conference, 
Colorado Springs, Colo., June 13-17, 1966. 

Y ~ '  Yo inboard and outboard engine mode column 
vector, respectively (one component p e r  
resonance) 

AY =Y 
LI L I - ~ I  

inboard lox mode vector  difference Goerner ,  E. E. : Lox prevalve to prevent ' 

pogo effect on Saturn 5. Space/Aeronautics, 
December 1968. 

YLI, YLO 
lox mode column vector upstream of 
inboard and outboard stiffness, respec- 
tively ( o n e  component p e r  resonance) Rocketdyne, North American Inc. : Engine 

system transfer  functions for  support of S-V 
vehicle longitudinal stability (pogo) analysis 
program. Report R-6929, Canoga Park,  Cal. 
March 8, 1967. 

AY Lo=Y Lo-Y outboard lox mode vector 
difference 

transformed displacement vector in 
eigenvalue model Dent, E. J. : Feedline analysis fo r  inclusion 

in pogo stability programs. Memorandum 
Ci-SRL-2-001-4, Brown Engineering Co. ,  
May 1966. 

a-I diagonalized t ransfer  function matr ix 
of eigenvalue model 

Bellman, R. : Introduction to matr ix analysis. 
McGraw-Hill Book Co. , Inc. , New York, 1960, 
pp. 35,36. 

resonances of eigenvalue model in radians 

damping value of resonances w .  

Zadeh, L. A. , and Desoer, C. A. : Linear 
System Theory. McGraw-Hill Book Co. ,  Inc.,  
1963, pp. 311, 312. 
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