


I. INTRODUCTION 

In a previous paper (~ubbard 1968; referred to here as paper I), it 

was argued that the net flux of energy from Jupiter estimated by Low (1966) 

implies a superadiabatic temperature gradient in the interior, and there- 

fore the planet is probably completely convective. This conclusion was 

based upon the model planets calculated by DeMarcus (1958; DM in the 

following), and Peebles (1964), together with some additional assumptions 

concerning the thermodynamics of metallic hydrogen at finite temperature, 

as weLl as a new result for the thermal conductivity of metallic hydrogen. 

The purpose of this paper is to calculate completely convective model 

planets for Jupiter and Saturn using the temperature effects on the equa- 

tions of state as given in I, together with zero-temperature equations of 

state for hydrogen and helium as given by DM, or more recently calculated 

by Salpeter and Zapolsky (1967; SZ), and an adiabatic temperature distribu- 

tion. 

The assumption that Jupiter and Saturn are completely convective 

imposes certain constraints on possible models, the most important of these 

being that Jupiter and Saturn must be chemically homogeneous. In the case 

of Jupiter, using the observed luminosity, and the mixing length theory of 

convection, one can readily verif'y that Jupiter must have mixed com2letely 

over the age of the solar system, and this conclusion is probably also valid 

for Saturn (see $v). It must be conceded that if Jupiter or Saturn were 

provided with a dense core of matter with a sufficiently large thermal 

conductivity, such a core would be stable against convection and would thus 

be able to preserve its chemical identity. On the other hand, the previous 

history of the planet would have to be such that it would be possible for 



the core to fractionate out at some time. As discussed by '&ik (1962) and 

Peebles (1964)) diffusion under the influence of a gravitational field is 

altogether inadequate to provide such a separation. If the primeval Jupiter 

and Saturn were high temperature objects with extended radius, undergoing 

rapid convection, it is doubtful that a separation could ever occur, and 

in this paper we proceed under the assumption that Jupiter and Saturn possess 

no high density core differing in chemical composition from the remainder of 

the planet. 

The models of Jupiter and Sattlrn calculated by DM are chemically similar 

to the Sun, while Peebles has found Jupiter and Saturn to have an even larger 

hydrogen to helium ratio than the Sun. On the other hand, direct observa- 

tional estimates of abundances in the Jovian atmosphere tend to suggest that 

Jupiter has a smaller hydrogen to helium ratio than the Sun. *&ik (1962), upon 

reviewing tne occultation data of Baum and Code (1953), has concluded that 

the Jovian atmosphere is essentially pure helium. The most recent estimate 

of Jovian abundances is by Beckrnan (1967)) using an analysis based on the 

theory of pressure broadening of methane lines in a hydrogen-helium atmosphere. 

Beckman finds the fraction of hydrogen by mass, X, to be about 0.54, with 

the remaining fraction mostly helium. Other rather disparate values are 

to be found in the literature (e. g. , Iasker 1963, Trafton 1967). A mechanism 

for the enrichment of the Jovian atmosphere in helium relative to the 

interior of the planet has been proposed by Smoluchowski (1967); in this 

discussion, however, we take the point of view that the atmospheric abund- 

ances are characteristic of Jupiter and Saturn as a whole. In the case of 

Jupiter, we take Beckman's result to be correct and assume X = 0.54, 

Y (helium abundance by mass) = 0.46, and assume that the minor constituents 

contribute negligibly to the equations of state. 



In the case of Jupiter, it should be evident that the planetary structure 

is greatly overdetermined if we fix the chemical composition, dispense with 

a dense core of adjustable size, and require the tc~~erature distribution 

in the interior to be consistent with the observed luminosity and age of the 

solar system, as well as requiring a fit to directly observed parameters such 

as mass, mean radius, and gravitational moments J and K. Thus a fairly 

severe test of the assumed equations of state results. 

In $ I1 below, we discuss the DM and SZ equations of state, together 

with temperature modifications. In 5 111, we discuss the model atmospheres 

of Jupiter and Saturn as calculated by Trafton (1967)) and consider how these 

atmospheres may be used to estimate the central temperature for a completely 

convective planet. In $ N are presented the results of the model planet 

calculations, which are discussed in $ V. 

11. EQUATIONS OF STATE 

Two different procedures may be used to calculate the equation of state 

of the metallic phase of hydrogen at zero temperature. The Wigner-Seitz 

method, which was first employed by Fligner and Huntington (1935), replaces 

a unit cell of the lattice with a spherical volume and solves for the wave 

function of the electrons in the self-consistent field of the protons plus 

electrons subject to periodic boundary conditions at the surface of the unit 

cells. The Thomas-Fermi-Dirac method, in contrast, also uses a spherical 

unit cell and a self-consistent field, but the local electron density is 

'The assumed values for mass, mean radius, and gravitational moments of 

Jupiter and Saturn are the same as those given by Peebles ( lqc4).  



given by t he  l o c a l  chemical po ten t ia l  according t o  Fermi s t a t i s t i c s ,  r a ther  

than by t he  absolute square of the  solution t o  the  Schr'ddinger equation. 

In both methods, exchange and corre la t ion corrections a r e  included i n  an 

appropriate manner. Since hydrogen has only one e lect ron per un i t  c e l l ,  

t h e  Wigner-Seitz method would seem t o  give superior r e s u l t s  t o  t he  TFD method 

i n  t h i s  case. However, a comparison of model p lanets  calcula ted according 

t o  both procedures i s  desi rable  i n  t h a t  it gives a quant i ta t ive  indicat ion 

of t h e  bas ic  uncertainty i n  t he  theore t ica l  metal l ic  hydrogen equation of  

s t a t e .  

The TFD equation has been solved by SZ f o r  a l a rge  number of elements, 

including hydrogen and helium, and t h e i r  equation of s t a t e  includes a more 

modern r e s u l t  f o r  t he  cor re la t ion  energy than was  used by DM. In Figure 1, 

we p l o t  t h e  r a t i o  of t h e  SZ density t o  t he  DM density f o r  a range of pressures,  

f o r  hydrogen and helium. The convergence of t h e  two r e s u l t s  a t  high pressures 

i s  not accidenta l ,  s ince  Salpeter  (1961) has shown t h a t  t h e  leading correc- 

t i ons  t o  t he  i dea l  Fermi gas pressure i n  t he  limit of high pressure a r e  t he  

same whether calcula ted by Wigner-Seitz o r  TFD theory. The convergence of 

t h e  DM and SZ equations of s t a t e  takes place a t  such a low pressure t h a t  

Jovian models should be reasonably insens i t ive  t o  which equation of s t a t e  i s  

used. This rapid  convergence i s  due e s sen t i a l l y  t o  t he  f a c t  t h a t  t h e  e lect ron 

wave functions become nearly plane waves a t  dens i t i es  g rea te r  than about 

1 g ~ m - ~ ,  which i s  equivalent t o  saying t h a t  t h e  e lect ron d i s t r i bu t i on  be- 

comes nearly uniform. A quant i ta t ive  measure of the  uniformity of t he  

e lect ron d i s t r i bu t i on  i s  provided by considering t h e  asymytotic form of t h e  

pressure given i n  SZ: 



where Po i s  the pressure of an idea l  Fermi gas of electrons at zero tempera- 

ture ,  Z i s  the ionic charge i n  units of an electronic charge, and 

- 3 where P i s  the density i n  g cm and p = 1 (2) for  hydrogen (helium). We e 

then define an effect ive ionic charge Zeff by requiring tha t  the asymptotic 

pressure, formula ( l ) ,  give the correct pressure even a t  low density when 

Zeff i s  substi tuted fo r  Z i n  the formula (see Fig. 2). Thus Zeff can be 

interpreted as  the ionic charge which gives the correct pressure i f  the 

electron dis t r ibut ion i s  assumed t o  be uniform and the electron density 

equal t o  the average electron density. Anticipating the resu l t s  of the  

detai led model planet calculations, we f ind tha t  for  the center of Jupi te r ,  

Zefp i s  about 0.8 fo r  hydrogen and about 1.3 fo r  helium. For Saturn's 

center, Zeff i s  about 0.65 and 1.0 fo r  hydrogen and helium respectively. 

The assumption of uniform electron density i s  therefore a reasonable 

approximation for  the Jovian center, a t  l e a s t  i n  the neighborhood of the 

protons. The accuracy of the SZ and DM equations of s t a t e  i s  therefore 

probably much greater for  the Jovian center than the Saturnian center. 

Since the negative charge dis t r ibut ion a t  the Jovian center may a t  

l e a s t  i n  f i r s t  approximation be regarded as uniform, it seems reasonable 

t o  apply the  Monte Carlo calculations of Brush, Sahlin, and Teller (1966; 

BST) t o  obtain the thermodynamic functions of the proton-alpha pa r t i c l e  

plasma i n  the planetary inter ior .  The BST data a re  applicable t o  a strongly 

coupled one-component plasma i n  a uniform neutralizing background, at 

temperatures above the Debye temperature. For reasons discussed i n  paper I, 

the temperature i n  Jup i t e r ' s  metallic hydrogen core i s  probably above the 

Debye temperature, a d  the same conclusion i s  probably t rue  fo r  Saturn. 



Unfortunately, the  BST data  cannot be straightforwardly applied t o  the  

Jovian i n t e r i o r  since Jup i te r  probably contains of the  order of 20 per cent 

helium ions by number, and the  plasma i s  therefore a multicomponent one. 

Furthermore, the  electron background i s  i n  no way uniform i n  the  neighborhood 

of the  alpha par t ic les .  In order t o  t r e a t  t h i s  problem, the  following 

approximations have been made: We assume t h a t  t he  plasma coupling parameter 

can be defined f o r  a multicomponent system as  

where n i s  the  nuniber density of ions of species a. The coupling parameter 
Q 

I' i s  then used a s  the  argument i n  the  corrections t o  t he  ideal gas thermo- 

dynamics a s  given by BST. This approximation i s  rigorously correct  i n  the  

Debye-KGckel limit (P << 1 ) )  and we assume it i s  approximately correct  i n  

t he  strong-coupling limit (I' >> 1 )  a s  well. The correction t o  t he  i dea l  gas 

entropy a s  a function of I? can be calculated from the BST data,  and i s  

plot ted i n  Figure 3. To obtain t he  t o t a l  entropy r e l a t i v e  t o  a known zero 

point ,  we simply add the  coupling correction t o  the  entropy of an i d e a l  gas 

of protons and alpha par t ic les .  Contributions t o  the  entropy due t o  excita-  

t i ons  of higher e lect ron s t a t e s  a r e  assumed t o  be negligible.  The t o t a l  

pressure i n  t he  limit of uniform electron d i s t r ibu t ion  i s  then given by the  

sum of BST pressure,  i d e a l  ,Fermi gas pressure, exchange pressure, and 

cor re la t ion  pressure. Only t he  BST pressure i s  assumed t o  be temperature 

dependent. The BST pressure can be fur ther  broken down i n t o  the  Coulomb 

pressure [which i s  negative; t h i s  has been calculated by Salpeter (1961)1, 

and a contribution due t o  thermal vibrat ions  of t he  ions (posi t ive) .  The 
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latter contribution is the only one which really depends strongly on 

temperature for I' 5 30. 

An alternative and equivalent point of view is to regard the planetary 

matter as a Debye solid with a Debye temperature @ a P1/* (see paper I). 

The temperature perturbations to the zero temperature pressure are then due 

to a gas of phonons, and above the Debye temperature one obtains for the 

pressure 

where P is the zero temperature pressure, consisting of Fermi pressure, 0 

exchange pressure, Coulomb pressure, and correlation pressure, and n is 

the ion number density. For densities so low that the electron distribu- 

tion is non-uniform, Po is given, for example, by the solution to the TFD 

equation, together with appropriate correlation corrections. At such 

densities, we assume that O a is also valid, such that equation (5) 

remains correct. For a multicomponent system, we replace n by C na. 
a 

In order to isolate the temperature perturbation as in equation (5), 

it is necessary to verify that the temperature variations in Po are 

negligible. The source of temperature dependence in Po would be: (a) a 

change in shape of the Coulomb well due to a weakening of the coupling, 

(b) temperature variations in the exchange pressure, (c) temperature varia- 

tions in the F e d  pressure, Let us consider typical conditions in the 

4 0 -5 Jovian core, such that T -10 K, P N 4 g cm . Here the density is 

sufficiently high for the BST data to be approximately valid, and we find 

that relation (5) is equivalent to the BST result to within about 3 per cent, 

indicating that the shape of the Coulomb well is essentially that of an 

unscreened charge within a Wiener-Seitz sphere, the same as at zero 



temperature. Under these  conditions, r -- 30, corresponding t o  t he  l i qu id  

phase i n  t h e  BST model. Since the  perturbations t o  t he  Fermi pressure go 

a s  8 f o r  low temperature, one read i ly  f inds  these  perturbations t o  be 

completely negl igible  under t h e  assumed conditions. For non-zero tempera- 

t u r e ,  we can wr i te  t he  r a t i o  of the  exchange pressure, Px, t o  t he  Fermi 

pressure Pf, i n  the  form 

where 

$ i s  t he  e lect ron chemical po ten t ia l  r e l a t i v e  t o  kT, and C '  i s  a constant 

independent of temperature and density ( ~ e ~ i t t  1966 ) . A t  zero temperature, 

equation (6 )  reduces t o  the  r e s u l t  given by Salpeter  (1961). We f i n d  t h a t  

t he  value of Px/pf i s  only about one per cent l e s s  under t he  assumed condi- 

t i ons  than it i s  a t  zero temperature. The perturbation due t o  t h e  phonon 

exc i ta t ion  amounts t o  about 1 0  per  cent of t h e  t o t a l  pressure under these  

conditions, and it i s  therefore  a va l i d  approximation t o  neglect temperature 

var ia t ions  i n  a l l  other  contributions t o  the  pressure. 

For t he  case of a mixture of ion ic  species, the  pressure i n  TFI) theory 

i s  determined by requiring the  t o t a l  volume of t h e  system under a given 

pressure t o  be eqllal t o  the  sum of t h e  volumes of each ion ic  species. In  

t h i s  way we obtain t he  impl ic i t  equation of s t a t e  f o r  a mixture of hydrogen 

and helium; thus 



where P (P) is the density of component a at pressure P. This procedure a 
for calculating the equation of state of a mixture was also used by DM and 

Peebles. In the present discussion, Po is calculated using equation (8), 

and the total pressure is obtained using equation (5). 

In the outer parts of the planet the physical conditions become more 

obscure. As the density decreases, the electrons tend to cluster more and 

more about the ions, and eventualy the metallic phase becomes unstable 

and undergoes a transition to the molecular phase. The phase transition 

in hydrogen has been studied by DM, who finds that at zero temperature the 

transition from metallic to molecular hydrogen occurs at a pressure of about 

2 megabars. This corresponds to a density in the metallic phase of about 

-3 
1 g cm . However, it has been suggested by Alder (1960) that the actual 

phase transition at zero temperature probably takes place near a pressure 

of 20 megabars. Furthermore, it has not been considered whether the helium 

component of the gas undergoes a similar polymorphic phase transition, and 

for models with a large helium abundance this question becomes relevant. An 

additional complication is that at densities around unity and lower, the 

temperature effects on the equation of state are quite large and undoubtedly 

affect the critical density. 

Since the situation in the outer layers of Jupiter and Saturn is quite 

obscure, we have adopted the following essentially ad hoc procedure for 

treating this region. In the center, we assume that an adiabat is given 

as in the Debye model by 

where C is a constant determined from the surface condition (see 4 111). 

As discussed in paper I, equation (9) is valid also in the liquid metallic 



region, according t o  t h e  EST data. The pressure i s  then determined a s  a 

function of P only by i n se r t i ng  equation (9)  i n  equation (5). We then 

assume t h a t  t he  polymorphic phase t r ans i t i on  takes place a t  a  metal l ic  

densi ty  p0, and require  t h a t  the  pressure i n  t he  molecular phase a t  t h i s  

point  be equal t o  t h e  pressure i n  t h e  metal l ic  phase. To ca lcu la te  t he  

pressure i n  t he  molecular phase, we have used t he  DM equation of s t a t e  f o r  

molecular hydrogen together with e i t h e r  t he  DM o r  SZ equation of  s t a t e  f o r  

helium. The t o t a l  pressure i s  then calculated by assuming T = cpn, where C 

i s  t h e  same constant a s  i n  t he  core, and using equation (5) ,  which now has 

no physical  significance but  i s  simply an in terpola t ion re la t ion.  On physical 

grounds, one would expect n N 0.4 near t h e  surface, s ince  t h i s  i s  t he  

ad iaba t ic  r e l a t i on  which one obtains f o r  a molecular hydrogen gas a t  a 

temperature of around 200 OK. We have calculated models with n = 0.5 and 

n = 0.4 i n  t h e  envelope, and t he  r e s u l t s  a r e  qu i te  insens i t ive  t o  which 

value i s  used. Since there  i s  a discont inui ty  i n  density a t  t he  polymorphic 

phase t r ans i t i on ,  an un rea l i s t i c  d iscont inui ty  i n  temperature r e s u l t s  at 

t h i s  point ,  but  t h e  discont inui ty  i s  qui te  small and has a negl igible  e f f ec t  

on t h e  models. 

The proper t ies  of t he  in terpola t ion formula can be i l l u s t r a t e d  by 

checking i t s  f i t  i n  t he  atmosphere. Let us consider t yp i ca l  atmospheric 

conditions f o r  Jup i te r ,  such t h a t  T = 150 OK, P = 1 bar ,  X = 0.54. The 

-4 - 3 corresponding density i s  then about 2.1 X 10  g cm . The temperature 

n 
given by T = CP i s  about 100 OK f o r  C = 6800, n = 0.5, and about 230 OK f o r  

C = 6800, n = 0.4. The pressure given by t he  in terpola t ion r e l a t i on  i s  thus 

1 .7  bar  and 3 . 9  bar  respectively.  Therefore, t h e  n = 0.5 in te rpo la t ion  

r e l a t i o n  gives a b e t t e r  f i t  t o  t he  surface temperature and pressure,  although 

t h e  n = 0.4 r e l a t i on  gives a b e t t e r  f i t  t o  t h e  var ia t ion  of pressure with 



density near t he  surface. 

In  the  models we have t rea ted  p0 a s  an adjustable parameter, and have 

chosen it t o  conform t o  t he  estimates of Alder and DM respectively. Since 

t he  SZ equation of s t a t e  f o r  hydrogen i s  qui te  close t o  the  DM equation of 

s t a t e  f o r  molecular hydrogen i n  the  low density region, t he  models a r e  

pa r t i cu l a r ly  insens i t ive  t o  t he  value of p0 when the  SZ equations of s t a t e  

a r e  used f o r  t he  core. 

As i n  previous model planet calculations,  we assume no phase t r ans i t i on  

occurs f o r  helium and use t he  same equation of s t a t e  (DM or SZ) i n  both 

core and envelope. A s  i n  paper I, we assume t h a t  the  melting point of the  

Coulomb l a t t i c e  i n  the  metal l ic  phase i s  given by r = 40. 

111. THE SURFACE CONDITION 

As shown by Hayashi and Nakano (1963)) the  s t ruc ture  of a completely 

convective low mass object can be estimated by calculat ing the  entropy a t  

t h e  surface of the  object ,  using a model atmosphere, and by requiring the  

surface entropy t o  equal t he  entropy i n  the  deep i n t e r i o r  where pressure 

ionizat ion i s  presumably complete and the  equations of s t a t e  a r e  known. The 

adiabat i n  the  complex envelope i s  then guessed by smoothly in te rpo la t ing  

between the  surface and the  i n t e r io r .  Such a procedure assumes, of course, 

t h a t  the  zero point of the  entropy a t  the  surface and the  i n t e r i o r  i s  the  

same. The equatton f o r  t he  entropy per heavy p a r t i c l e  of a mixture of 

hydrogen and helium a t  the  surface and center of a low mass s t a r  a r e  given 

by Hayashi and Nakano, and a r e  employed here, with cer ta in  modifications. 

The expression used by Hayashi and Nakano t o  calculate  the  entropy of molecular 

hydrogen a t  the  surface assumes t h a t  t he  temperature i s  su f f i c i en t ly  high 



for the rotational modes to be treated classically, but this approximation 

is not valid for the Jovian or Saturnian atmosphere. For pure hydrogen, 

the rotational contribution to the entropy in the classical approximation 

(4 - 

I kT - 2 
rot. class. 

where n is the number density of heavy particles (protons, in the case of 
P 

pure hydrogen), and I is the moment of inertia of the % molecule. !The more 

precise quantum-mechanical expression is 

- - 
rot. Q.M. 

(Landau and Mfshitz 1958). Here g = 114, gU = 3/4, and 
g 

= C i12 
zu K=1,3,. . . ( 2 ~ + 1 )  exp [- K(K +1)] . 



The formula fo r  the  surface entropy given by Hayashi and Makano can then 

be used, with t h e  addit ion of a correction term equal t o  

(*lot., Q.M. - L o t .  , class.  

Contributions due t o  ammonia, methane, and other minor consti tuents a r e  

not included. 

For t h e  center of Jup i te r ,  we use the  expression given by Hayashi and 

Makano f o r  the  entropy of a degenerate electron gas plus an i d e a l  gas of 

protons and alpha pa r t i c l e s ,  plus t he  correction term taken from BST (Fig. 1 ) .  

Thus, we calculate  t he  value of r at t he  center of the  planet  which gives 

agreement with t he  surface entropy, which then gives the  cen t r a l  temperature 

and therefore  the  value of C. We have calculated C f o r  th ree  of Traf ton 's  

Jovian atmospheres and one Saturnian atmosphere, which a r e  summarized a s  

follows : 

Jup i t e r  model 1: 

X = 1.0, Te = 130 OK, Tc = 149 OK, PC = 0.65 bar; 

Jup i t e r  model 2: 

X = 1.0, Te = 120 OK, Tc = 139 OK, PC = 0.70 bar;  

Supi t e r  model 3 : 

X = 0.2, T e = 120 OK, Tc = 158 OK, PC = 1.77 bar;  

Saturn model 1: 

X = 1.0, Te = 100 OK, Tc = 118 OK, PC = 0.50 bar. 

Here Te i s  t he  e f fec t ive  temperature, and Tc and PC a re  t he  temperature 

and pressure at  t h e  top  of the  convective zone. The convective zone s t a r t s  



in all cases at a sufficiently large mean optical depth for the temperature 

gradient to be essentially equal to the adiabatic gradient. We then obtain 

the following results for C: Jupiter model 1, C = 7800; Jupiter model 2, 

C = 7800; Jupiter model 3, C = 8500; Saturn model 1, C = 7500. The value 

of C is apparently insensitive to the effective temperature, and can probably 

be safely extrapolated up to Te - 150 OK. In all cases we have assumed 

Z = 1 for hydrogen, i.e., the protons are completely unscreened by the 

electrons. In model 3, Z = 2 was assumed for helium. If we assume that r 

can be conrputed using Z = 1 for helium and hydrogen in model 3, C is reduced 

to 5300. In general, the value of C is reduced due to the effect of electron 

screening in reducing the value of Z. The reason for this is that for a 

given value of I', the temperature must be lower if Z is lower. 

We have adopted the following "obsermtionally determined" values for 

Jupiter: X E 0.54, Te : 150 OK, C - 7000. In the case of Saturn, we assume 

only that C - 7000 and determine the remaining parameters from the models. 
N. THE MODEL PIXIETS 

Once the value of X and C is prescribed, the equation of hydrostatic 

equilibrilun can be integrated to give the mass, radius, and density run for 

a model planet. In the present discussion, the central density was guessed 

and the equation of hydrostatic equilibrium integrated by a centered- 

difference implicit scheme out to a radius where perfect gas conditions 

obtained, and then integrated analytically to the surface. About 35 mesh 

8 
points were used, with a spacing of about 4 X 10 cm in the core and a higher 

density near the surface. Several models weye ca3culated with 100 mesh 

points, but very little increase in numerical accuracy resulted. The models 



were i t e ra t ed  t o  give the correct mass t o  within one per cent, and then X 

or C was adjusted t o  obtain the correct mean radius t o  within one per cent. 

The gravitational moments J and K were then calculated according t o  the 

prescription given by Peebles (1964). A f i r s t -order  correction t o  the 

equation of hydrostatic equilibrium due t o  rotation was a l so  included, 

f ollotlring Peebles . 
It should be noted tha t  the convective Jovian model calculated by 

Peebles has essent ial ly  a C of about 2000; thus Peebles' Jupi ter  model i s  

much colder than the one considered here. Since the Jovian model considered 

here i s  more thermally expanded, it i s  possible t o  make it richer i n  h e l i m  

and s t i l l  0btai.n the correct radius. The crucial  t e s t  i s  whether the correct 

values for  J and K a re  obtained. 

A f'urther check on the Jovian models i s  provided by considering the 

energy budget. Since the pressure i s  insensit ive t o  the temperature through 

most of the planet, the energy radiated i s  derived mainly from the thermal 

energy of the ions, which may be estimated t o  be about 3 kT per heavy 

pa r t i c l e  (see paper I). The t o t a l  thermal energy i s  then obtained by 

integrating t h i s  over the mass of the planet, using T - CP . We then use 

4 
h w ' s  estimate f o r  the net flux of energy from Jupi ter ,  H - 2 X 10 erg/cm2 sec 

t o  obtain the luminosity. The time scale which resu l t s  from dividing the 

t o t a l  thermal energy by the luminosity should be greater than or of the order 

9 
of the age of the solar system, .Y 5 X 10 years. 

The f i r s t  group of Jovian models, which were calculated using the DM 

equation of s t a t e ,  were not ent i rely sat isfactory since the gravitational 

moments were about 3 t o  5 per cent too small. It would have been possible, 

however, t o  force agreement i n  3 and K by increasing X t o  about 0.61 and 

reducing C t o  about 6400. This i s  probably not outside the range of uncertainty 



i n  these  quant i t ies .  Models J1 through 57 a r e  tabulated i n  Table 1; these  

models ind ica te  t he  r e l a t i v e  change i n  various quan t i t i es  a s  a function of 

a l t e r a t i o n  of uncertain parameters i n  t h e  equations of s ta te .  In t h i s  t ab l e ,  

pc i s  t h e  cen t r a l  density of t he  model i n  g cm-', r i s  t he  time scale  i n  

9 10  years,  and n i s  t h e  exponent which appears i n  t he  assumed temperature 

n r e l a t i o n  i n  t he  molecular envelope, T = CP . In most of the  models we have 

assumed t h a t  t he  c r i t i c a l  pressure f o r  t he  polymorphic phase t r ans i t i on  i s  

about 5 megabars. For previously discussed reasons, t he  models calculated 

with t he  SZ equation of s t a t e  a r e  qu i t e  i n sens i t i ve  t o  t h e  c r i t i c a l  pressure. 

Model J5  was calculated on t he  assumption t h a t  the  c r i t i c a l  pressure i s  

about 20 megabars. Even i n  t h i s  case, the  s e n s i t i v i t y  t o  the  change i s  not 

strong. 

In general,  t he  models calculated with t he  SZ equations of s t a t e  

allowed a somewhat b e t t e r  f i t  t o  t he  observed paramters .  Model 57, which 

we consider t o  be t h e  be s t  of t h e  seven Jovian models, i s  tabula ted i n  

d e t a i l  i n  Table 2. We emphasize t h a t  t he  temperatures given f o r  t h e  outer 

por t ions  of t h e  planet  a r e  given by t he  in te rpo la t ion  r e l a t i on  and a r e  

the re fore  only of qua l i t a t i ve  significance. The quanti ty pT/P i s  t he  f r a c t i m  

of the  t o t a l  pressure due t o  temperature e f fec t s .  The coupling parameter I' 

was calcula ted assuming Z = 1 f o r  both hydrogen and helium. If we assume 

the  ions  form a l a t t i c e  f o r  I' > 40, t h i s  model implies a completel.~ l i qu id  

planet .  Note t h a t  t h e  coupling increases toward t h e  surface,  so t h a t  

solidif ' icat ion w i l l  occur f i r s t  i n  a surface c rus t  as t h e  cooling continues. 

The uncer ta in t ies  i n  estimating t h e  melting temperature a r e  so g rea t  t h a t  

it i s  e n t i r e l y  poss ible  t h a t  Jup i t e r  has a so l i d  hydrogen layer  somewhat 

below t h e  surface,  with a l i q u i d  metal l ic  hydrogen core. 



The cooling time given f o r  a l l  models has been calcula ted assuming a 

heat  capacity of 3 k per heavy par t i c le .  However, f o r  t he  range of r given 

i n  Table 3, a heat  capacity of about 2.5 k i s  more appropriate, according 

t o  t he  data  of BST. Upon making t h i s  correction,  t he  cooling time f o r  model 

9 
57 becomes 5.4 X 10  years. 

In general,  t he  Saturnian models calculated according t o  the  procedures 

outl ined above a r e  ra ther  unsatisfactory.  Since t h e  cen t ra l  densi ty  i s  so 

low, the  in terpola t ion r e l a t i on  i s  e s sen t i a l l y  applied t o  the  e n t i r e  planet  

and good r e s u l t s  woluld be en t i r e ly  for tui tous .  For a l l  models calculated,  

it was necessary t o  increase C t o  un rea l i s t i c a l l y  l a rge  values and reduce X 

t o  about 0.2 t o  obtain good agreement with t h e  observed grav i ta t iona l  moments. 

From the  arguments given i n  $ 111, it seems l i k e l y  t h a t  C i s  approximately 

t h e  same a s  i n  Jup i te r ;  however, t h e  cen t ra l  density i s  so low t h a t  t he  BST 

data  a r e  probably not applicable even a t  the  center. The e f f e c t  of a la rge  

amount of helium i s  a l so  uncertain since Trafton has only calcula ted a pure 

hydrogen atmosphere f o r  Saturn. In any event, we consider it trnliliely t h a t  

t he  cen t ra l  temperature of Saturn could be l a rge r  than the  centra l  temperature 

of Cupiter. 

The Saturnian nodels a r e  summarized i n  Table 3. The SZ equations of 

s tz5e provided no s ign i f ican t  improvement over t he  models calculated w i t h  

t h 2  DM equations of s t a t e ,  a fu r ther  indicat ion t h a t  t he  d i f f i c u l t y  l i e s  

i n  t h e  in terpola t ion re la t ion.  To i l l u s t r a t e  t he  r e l a t i v e  r o l e  of tempera- 

tu1.e i n  the  case of Jup i t e r  and Saturn, we p l o t  PT/p f o r  both planets  i n  

F i ~ u r e s  4 and 5. In t h e  case of Saturn, temperature e f f ec t s  on t he  pressure 

can hardly be regarded a s  a perturbation,  even a t  t he  center. 

An a ~ p r o p r i a t e  modification of t he  in terpola t ion r e l a t i on  might produce 

more r e a l i s t i c  r e s u l t s  f o r  t h e  Saturnian grav i ta t iona l  movements, but  such 



a procedure would not be particularly illuminating. Instead, we content 

ourselves with drawing the following qualitative conclusions: (a) Saturn 

is probably richer in helium than Jupiter, (b) the central temperature of 

Saturn is of the order of 10,000 OK. These conclusions are, of course, 

based upon the assumption that Saturn is convective. 

V. CONCLUSIONS 

The convective model of Jupiter presented here is fully consistent 

with the conclusions reached in paper I. The weakness of the model lies 

in the treatment of the outermost layers, where the matter is probably in 

a dense fluid phase of molecular hydrogen, and where temperature perturba- 

tions to the pressure are not negligible. The problem is further complicated 

by the possibility of a liquid-solid phase transition in the metallic 

hydrogen near the surface, which may affect the possibility of convection 

in this region. The treatment of this region of the planet may ultimately 

depend upon experimental data at pressures not presently attainable. 

How well is the chemical composition of Jupiter determined theoretically? 

If we increase the hydrogen abundance to about 80 per cent by weight, de- 

creasing the internal temperature simultaneously to obtain the proper 

radilrs, the gravitational moments become too large. However, they can be 

brought into agreement with the observed values by postulating a small high 

density core; thus we recover Peebles' model of Jupiter, particularly if the 

DM equations of state are employed. However, Peebles' model has such a low 

value of C that it is probably not consistent with Trafton's calculation of 

the surface condition, assuming complete convection. Furthermore, if 

Jupiter's intrinsic luminosity is as large as the value adopted in this 

paper, the Peebles model would not possess sufficient energy to radiate over 



the age of the solar systt;~~. xnerefore, a better observational value for 

Jupiter's luminosity may help to discriminate between Peebles' model with 

a large hydrogen abundance and the present model (57) with a hydrogen 

abundance somewhat smaller than the solar hydrogen abundance. An improved 

determination of atmospheric abundances is evidently also desirable. 

The model planets calculated for Saturn cannot be said to provide much 

support for the possibility that it is convective. 'dpik (1962) has speculated 

that Saturn may possess a net luminosity approximately one third of Jupiter's, 

and Low (1966) has mentioned observational evidence which does not contradict 

this view. The model planets presented here are consistent with this hypo- 

thesis, for if we estimate the thermal energy in Saturn from the models and 

9 divide by the tilne scale of the solar system, 5 X 10 years, the predicted 

1.uminosity is from one third to one fifth. that of Jupiter, depending on the 

value chosen for the heat capacity of the Saturnian model. Using the same 

arguments as in paper I, it can be s h m  that such a luminosity would be 

sufficient to support convection in the metallic hydrogen core at least. 

If Alder's surmise is correct, and the critical pressure for the transition 

from molecular hydrogen to metallic hydrogen is about 20 megabars, then 

metallic bydrogen probably does not exist in Saturn at all. Clearly, a good 

observational determination of the Saturnian luminosity and atmospheric 

chemical composition, and a direct measurement of the existence or nonexist- 

ence of a Saturnian magnetic field would provide much information on the 

state of the Saturnian interior. 

It is a pleasure to thank Drs. J. W. Bahcall, E. J. kik, and 3. S. 

Za-polsky for helpful discussions. 

All numerical work was performed at the Booth Computing Center of the 

Caifornia Institute of Technology. 



Number X C T J K Equation of S t a t e  

Observed 0.54 7000 -- 5 0.0221 0.0025 - - 

52 0.60 6700 4.20 7 . 1  0.0214 0.0024 DM, n = 0.5 

J3 0.59 7000 4.23 7.2 0.0211 0.0023 DM, n = 0.4 

54 0.60 6700 4.20 6.9 0.0216 0.0023 DM, n = 0.4 

3C 
J5 0.59 7000 4.19 6.5 0.0210 0.0023 DM, n = 0.4 

J6 0.54 7000 4.42 6.9 0 .02l l  0.0023 SZ, n = 0.4 

J7 0.56 6800 4.23 6.5 0.0221 0.0026 SZ, n = 0.4 



TABILE 2 

JUPITER MODEL ( 5 7 )  

Radius P P T r 
(X 1.0' em] (mb (OK) 



TABU 3 

SATURNIAN MODELS 

Number X C J K Equation of  S t a t e  

Ob served - - 7 OOO? - - 0.0250 0.0039 - - 

DM, n = 0.5 

DM, n = 0.5 

SZ, n = 0.4 

SZ, n = 0.4 
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FIGURE CAPTIONS 

Fig. 1. The r a t i o  of density a s  given by the SZ equation of s t a t e  t o  

the density a s  given by the DM equation of s t a t e ,  fo r  hydrogen 

and helium. 

Fig. 2. The value of the ionic charge which gives the correct pressure 

fo r  a uniform electron dis t r ibut ion,  computed on the  basis  of 

the SZ equation of s ta te .  

Fig. 3. Correction t o  the entropy due t o  par t ic le  interactions,  

calculated from the data of BST. 

Fig. h .  Density and temperature perturbation run fo r  model ~ 4 .  

Fig. 5. Density and temperature perturbation run f o r  model S2. 
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