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ABSTRACT 

Tanks f o r  cryogenic f luids,  a s  used i n  the Saturn space vehicles, have 

reached an advanced stage of design and development. Many of the s t ructura l  

features of the  ~ ~ ~ A / ~ o u ~ l a s  Saturn tanks, fabricated of 2 0 1 b ~ 6  duminum 

alloy, were first developed fo r  the booster of the Thor b a l l i s t i c  missile, 

which h t e r  found extensive use i n  putt ing space vehicles in to  orbit .  

There is a mutual dependence of important factors re la ted t o  design concepts, 

selection of materials, processing techniques, and fabrication methods. It 

is shown t h a t  t h i s  mutual dependence must be considered i f  a successfld 

vehicle is t o  emerge from design and developnent. 

Details of vehicle structure, provision fo r  insulation, and manufacturing 

mthods axe presented. Cr i t e r i a  f o r  the selection of miterials  is shown t o  

be dependent on strength, duct i l i ty ,  weldability, toughness, fabricabil i ty,  

behavior a t  cryogenic temperatures, and on manufacturing methods and 

inspection techniques. 



THE PRODUCTION OF URGE TATB FOR CRYOGENIC FUELS 

Cry~gen ic  f l u i d s  are the energy source fo r  t i e  propulsion of the  adv~nced 

space vehicles of t h i s  era. These f lu ids  are  coritained wider pressure i n  

booster tanks. The booster tanks my a l so  function, i n  part ,  as supporting 

s t ruc tu re  f o r  t - m s t  K-otors and for the upper stages of multiple stage space 
: ?. 1 0 s The s t r u c t l ~ r e  of such a vehicle i s  subject t o  a var-iety of loads 

Ln a colr;;llex and ck.~?ging envirorsent. It riiust be of l igh t  welghr ,  t o  achieve 

t h e  r e p i r e d  extreme of performcce, a d ,  tinerefore, it must func',ion a t  high 

l e v e l s  of  s t r e ss .  Performance m s t  be highly re l iable ,  because s t ruc tu ra l  

fa i lu re  a f fec t s  ssl'ety a d  cost, and nay ca7Jse serious delays i n  tine launch- 

ing of ilnportar?t spzce projects .  Costs must be carefully controlled i n  the 

design and production stages because the cost of a booster, which i n  present 

designs is riot reusable, adds hervily t c  the cost of p~tt i .ng payloads in to  

space. The use of cryogenic f lu ids  m y  require insulat ion f o r  the tanks. 

If cryogenic f lu ids  are  t o  be stored f o r  long periods i n  an orbi t ing vehicle, 

high perforroance insulat ion i s  required and it becomes an important fac tor  i n  

desigg. Furtherrcore, although zost  metals &e stronger a t  cryogenic tempera- 

tures ,  some a r e  muen nore sensit ive t o  defects. 

The production of large t a n k  f o r  cryogenic f lu ids  does, indeed, present 

unique and challenging problems of s t ruc tu ra l  design, of selection of 

nraterials, of processing tecnniques, of quali ty control, and of mnufactuzz- 

frg methods. Experience has shmn tha t  these problem of engineering and 

production are  mutually dependent i f  the goals of optimum performance and 

control led  costs  a re  t o  be realized. These in ter re la ted  tasks are  shown 

diagrammatically i n  Figure 1. 
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FIGURE 1 

The Douglas Aircraft Company produces the Thor, which has earned i t s  repu- 

t a t i o n  of a re l i ab le  high performance vehicle. Its record as a booster is 

well known. The Ihuglas Corqeny i s  also producing t h e  Saturn S-IV and S-IVB 

stages of the  world's l a rges t  space vehicle, a program under the d i rec t ion 

of the BUSA-Marshall Space Flight  Center. The Thor and the Saturn S-IV and 

S-IVB s tages  a r e  representative examples of la rge  cryogenic tank developments. 



Design of the Thor booster w s  i n i t i a t e d  i n  1955 a s  a b a l l i s t i c  missile 

wecpon, Figure 2. Later on it began t o  be used as  a booster fo r  space 

experimnts.  bTarly of the  s t ruc tu ra l  innovations introduced i n  the Thor 

design have been incoqorcted i n  the Saturn S-IV and S - I n  vehicles. The 

Douglzs Thor and SeQxrn boosters are  the subject of t h i s  discussion of 

design and development of large cryogenic tanks. 

FIGURE 2 



I. DESIGN CONCEPTS 

The structure of a large  booster tank for cryogenic fuels  may require 

r e la t ive ly  t h i n  v a l l s  f o r  pressure loads ceeause pressure requirenients 

a r e  usually not high. However, t h i n   all monocoque construction, a 

desirable type fo r  i t s  ssi-mlicit;;, requires increased w a l l  t h i c b e s s  endp 

possibly, consideration of addit ional  s t ab i l i za t ion  by pressurization f o r  

the higher hilckiling strength necded even fo r  the low leve l  in tens i ty  of 

t h r ~ l s t  m d  f l i g h t  loads. Additional s t i f fening and, possibly, pressur- 

iza t ion i s  a lso  needed t o  mire p rac t i ca l  the ground handling of such t h i n  

w a l l .  v-ehicles . 
A 1'1~~jor conslderatlon which derc,?nds a t t e ~ - - ~ i o n  from the coiii?..eer,~c;lzr;t ef 

design re la t - s  t o  safezy 2nd r e l x b i l i t y .  Relizble s t ruc tu ra l  p c r f o r ~ m c e  

must be achieved because s t ruc tu ra l  f a i lu re  a f fec t s  safety and cost, and 

m y  calrse serzour: delays i n  v i t a l  and expensive space projects .  He l i ac i l i ty  

end safe ty  &-e achieved 5hrougk1 excellence GÎ  deslgn, and the i r  consider- 

a ~ i o n  w i U .  c.:'fec-~ trie structuraL ccnfigura50n. Xcdifications of ul exis t ing 

design t o  ackieve or enhance r e l i a b i l i t y  so.-etines ylelds the desired resu l t s ,  

howsver, lt o x a n  happens t h a t  tee existln;: design incoqorazes fea-cures thar. 

do not Lend ti.?r,selves t o  good rel izibil i ty.  I n  such a case a m J o r  and ex- 

pensive ch~tage i s  necessssy befare any lzxovement i n  s t ruc tu ra l  performance 

can be obtained. 

The Tnor 

I n  the evoLL,cior! of the Thor design, cons~derat icn  was given TO the use of 

conventional sirin end s t r inger  construction, in tegra l ly  s t i f fened shel l ,  

ana i;ionoc-Lqki z~cil. ;<J~I~:OGCC t.ht5i.i iida r.-.LecteL :.!I. reiizons ;tLreacj- 

mentioned. Co~ventional  aircrsi'; skin XIS s t r inger  constmction, i ~ h i c h  

appeared t o  be a simple concept fo r  s t i f fening tank walls, presented numerous 

problems of load t ransfer  a t  Joints, of fabrication and of sealing. In tegre l  

waffle-grid s t i f fening provided by r i b s  irachined on the inner w a l l  of the  tank 

proved to be the most p rac t i ca l  ad e f f i c i m t  concept. The r i b s  rm at an 
0 

angle of 2 45 t o  the axis  of the tank, Figure 3. Rib height i n  the  Thor 
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design i s  about f i v e  t h e s  the  tank w d l  thickpess. The ribs a r e  produced 

by machining away square areas from p l a t e  stock. The edges of t h e  p l a t e  a r e  

lef t  full t h i cbLess  t o  insure adequate s trength of longi tudina l  seaa  welds 

i n  t he  tank, and t o  provide a good base f o r  the attachment of t he  domes t o  

t h e  tank walls.  After  :achining t h e  war'fle pa t te rn ,  the  p l a t e s  a r e  formed 

t o  t h e  tank  radius, arrd tinen th ree  s e g ~ e n t s  a r e  joined by longi tudina l  b u t t  

welds, Figure 4, t o  form the  96 inch (244 cm) diameter cylinder. Additional 

ttmk s t i f f en icg  f o r  ground handling i s  provlded by severa l  s ~ d l  t ransverse  

frames. These f ra9es  do not increase the  buckling s t rength  of t he  cylinder. 

The r i b s  could e l s o  have been proC?i?ced by chem-~Alling. However, rachined 

r;bs a r e  usual ly a l i t t l e  1r;ore prec ise  dimensionally and a re  not q p r e c j s b l y  

d i f f e r e n t  i n  cos t  L f  t he  rrachining i s  done vh i l e  t he  p l a t e s  =e f l a t .  Chem- 

.mi l l i ng  i s  usuaIJ-y prefer red  i f  the  mil l ing i s  t o  be done on curved panels. 

The waffle  s t i f f en ing  design possesses severa l  advantages over s t r i nge r  

s t i f f e n e d  tank w a l l s .  The ad\-antage of being able  t o  provide a th icker  

i n t e g r a l  edge pad ?or welding o r  mz~chanical joining has been mentioned. 

Approxjrctely 855 of the? weight of the waffle s t ruc tu re  i s  e f f ec t ive  i n  

r e s i s t i n g  tank pressure lozds. A rn?-~cI-. lover  percent of s t r i n g e r  s t i f f e n e d  

s t ruc tu re  i s  e f f ec t ive  i n  r e s i s t i n g  pressure loads. 

Fuel  f o r  the Ynor cons is t s  of kerosene and l i q u i d  oxygen. These f l u i d s  

are contained i n  tanics i n  the  boooszcr cylinder, Figure 2. Each tank  has 

s t i f f e n e d  end bulkheads. These bulkheads, o r  end domes, a re  s t i f f e n e d  by 

i n t e g r a l  ueridiacal, r i b s  chen-milled on the  convex s ide  of t he  done. The 

domas m e  s t r e t c h  forxed from s ingle  sheets  before being chem-milled. A 

lenii of -,he f u l l  t h i c c ~ r ~ c ~ s  of tr.e :-ilaet i s  l e f t  a t  t i e  edges of cne opening 

i n  the  center of t h e  dam, m.d a t  ?,he edges at  the  bottom of the  dome. 

These thicker  e&es f a c i l i t a t e  the attachment of t h e  access hole cover 

and t h e  attachment of  the  dome t o  t h e  tank  wall. The r i b  s t i f f e n i n g  on 



the  doms is used t o  provide buckling strength f o r  the s r i l l  negative 

pressure loads which c s d d  o2cu.r 'under cer ta in  circumstances.. The domes 

a r e  joined t o  the  tank wLLls by c?echanical. fasteners. Jo ints  are  made on 

the t h i c k  edges l e f t  by the ~ a c h i n i n g  and chen-milling. A f l u i d  t i g h t  

s e a l  is pro~iided by addi t ioni l ly  joining the dome t o  the  tank w a l l  by a 

l i g h t  weld. 

The upper Thor t w t  contains the kerosene Pdel. The lower tank contains 

%he L.ox cr i&izer .  Each zm-X izas i t s  o m  bulkheads. Since these tanks 

zre not se3~lreted b2- a. cczlioq Sulkhead, there i s  no danger or' tne l iqu id  

oxygen freezing tm kerosene cr~d no ins .~ la t ion  i s  required between the 

tanks. Ti0 insulat ion 's provided for  the cylinder w a l l s  of the oxygen 

tank. 'I"3e oxygen tank i s  t q p e d  off  a t  launch, and whatever i c e  has 

formed on the outside i; rz~i&ly melted off as the  vehicle gathers speed. 

Tank w d l s  and en2 domes ere  fzbricaze2 from 2014-~6 alu~Lnum alloy p l a t e  

end shee t  stock. This z l loy %:as selected because i t s  welding character- 

i s t i c s  xere s u ~ e r i o r  50 tBr?se 0f other ca?diCnte al loys available a t  t h a t  

t ine .  Tank . w a l l  segments eze joined by longitudinal bu t t  welds mde i n  

two passes on opposite sides or' the w a l l  with 4043 welding rod. The weld 

rod is an a l loy  of a l b ~ i n u n :  and about f ive  percent s i l icon.  The welds are 

m d e  by a u t c ~ m t i c  weldex %%th tine edges of the tank segaents c l q e d  

between quench bars. 

The kaff3.e-grid configmetion of 2 45' wes chosen on the  bas is  of t e s t  

clam frca a i-arietk of c a z ; ~ , ~ e t i o n s .  Figure 5 shows how the strength t o  

w i g h t  r a t i o  var ies  with v l s i z t ion  of the waffle skew angle. The 2 45' 

configu-zticn gives an e x i d  buckling strength of approximately 4500 p s i  
2 (3.16 kg/m ) f o r  the  .%nor tank. This buckling strength is  adequate f o r  

the  axid &nd axiel plus bending loads encountered. A monocoque cylinder 

of equ ivden t  buckiinz strength would be about 40$ heavier. 



F i p r e  6 shows a Thor tank being readied f o r  a pressure t e s t .  In t h i s  

test the tankc was pressurized by vater, so the highest pressure was a t  

the bottom of the  tank. The tarik was designed t o  withstand a pressure 

of 66.5 p s i  (4.52 a&) trhrch corresponds t o  a w a l l  hoop s t r e s s  of 
2 

52,000 p s i  (36.56 kg/m ) on the eouivalent ef fec t ive  w a l l  thickness. 
m-,. iii, =, equivalent cf fec t lve  WFU. thic:kness i s  agroximztely 85$ of the  

e q ~ i ~ i a l e n t  weignt w a l l  thickness. The tark b l ~ r s t  a t  a pressure of 

82, ~ s i  (5.58 at'iij, or ea_uiva.ler.t effective w a l l  hoop s t r e s s  of about 
2 

65,053 p s i  (45.73 kg/m ). FaiLxe occurred away from the lop-gizudinal 

weld ,lairits, as seen i n  Figure 7. 
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The Saturn S - I V  and 3-113 

Many of the design concepts used i n  the  Thor tan.!.! were incorporated i n  

the design of t h e  Saturn S-l'? and S-IJ93 tdks.  Figure 3 shows t h e  S-I7 

i n  t h e  u2per s tage of tine Sa3u-n C - 1  configr;-atttlon. The pos i t ions  of the 

S-f'JB s tege i n  S z t w n  canfigurations I3 ~lnd  V are  shown in Figures 13 

and 11. The general  dirxensiocs of these boosters  ne given i n  Tz'cle 1. 

A sket-h or" t h e  S z t > a n  S-IV stnge, Figure 9, shor;s t he  t z ~ k  sonfig.raS,i,~n 
. - for th4.s Sooc",r. 4criy s tuf i ica  sko-~ed t h a t  an a p p r e z i a ~ l e  saving i2 

weight cs-d-d Pe rs:dized by using a cornon d o ~ e  t o  sepzrz%e the l i q u i d  

hy&rotrer, .,.. end lin_ui.rl oxygen Cucir~l~~?. This ciorLe e l s o  provides i n s a l a t i o ~ z  

betxnfcn :'he  tan!^ . V i t h ~ u t  the  insula%ion, the  l i q u i d  ilq.drogen vo'ttlci 

f reeze  the i i q l l c ? .  oxygen. 

Tank v,?.ll.s, end d o z ~ s ,  anci comnon bulkhead i'e.cings a re  prcxluced from 

2011s-'2; a l l o y  p l a t e  and sheet .  Tank walls xee s t i f f ened  by waffle-grit 

riGLing, :'ollowins 'Xor prac t ice .  End dams are  s t i f f ened  by integr:il  

meridianal ribs. The wzfflc pa t t e rn  i n  t he  tank walls is  rachined i n  the 

p l a t e  before f t  is  formed t o  the  tank contwar. 'w'affle pz t t e rns  9-l /2 

inches (24.1 cm) sq-iare a re  mchined iri 1/2 inch (1.27 cm) p l a t e  f o r  t he  

S-T,Sr zr.5 In  3/k  inc?~ ( l . 9  cr.1) pl.l;te f o r  t he  S-ZVS. R i S  angle of t he  
0 .~df ! -e  prrtttern is 2 45 . The rat.io o f  r i b  height t,o tw.k v~LL thickU?ess 

is aboc",.5 f c r  bc th  tanks. T'ne tank cylinder i s  forxed 3y Longitudi- 

nal ly  b u t t  w e l d i ~ 3  the  segmnts  together  i n  two passes. Both passes a re  

race .r;i?,l; a u t o r ~ t i . ~  ;;t3lCiers 011 tli,e r;&~e s i i e  of the wali. This p rac t i ce  

d i f f e r s  from t h a t  cscd i n  Tkcr prc&u:uction, and tooii-ng arid productlotl 

cos t s  e-pe lower. Three segmnts  are welded together  t.o form the  S-IV 

t&., and seven segments a r e  used f o r  t he  S-IVB tank. As in Thor 

product-icn, 4043 m l d i n g  rod is  used. illlowable s t rength  of t he  jo in t s  i s  

based on as welded mechanical propert ies .  Higher weld s t rength  could ce 
* .  . 

obtain9d by heeat treatment, however, su5seqcent d i s t o r t i o n  of the  tmk end 

processing problem rmke these higher s t rengths  ilq?racticel. of achievexent. 
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Twik s t ructure  of both stages is divided in to  two compartments which a re  

s e ~ a r ~ t e d  by a common, constant radius bulkhead. The forwerd compartment 

contains the  l iqu id  hydrogen, and the a f t  corrrpartment contains the l iquid  

oxygen. The l iquid  hydrogen zmk i s  formed by the forward hemispherical. 

do=, the  c y l i n a i c a l  section, the.  port ion of the a f t  hemispherical dome 

fo17vaz-d of the comaon bul;-Jlleld, and the forward face of the comon bulk- 

he&. The s t ruc tu ra l  arra~4ement i s  shown i n  Figures 8, 9, 10, and 11. 

l i q u i d  oxygen congartrnent consists of the portion of the a f t  dome 

Icca ted  a f t  of the  common bulklead joint ,  ~ z d  the a f t  face of the  cornLon 

bulkhead. 

TEE f o ~ a r r d  dome of the  S-IV2 i s  fabricated f r o a  nine spherical  t r i m g l e  

segL.ixnts b u t t  welded toget'ner t o  form a nemisyhere. The segments a r e  

f ~ r s i  f o r m 3  t o  the l.30 inch (330 ca) radius from sheet stock and then 

chec-nilled. The nominal 1iaI.l thickness i s  0.056 inch (1.42 m). The 

e e e s ,  or veld l z r ~ d  areas, xre 0.113 inch (2.87 m) thick. This greater  

thickness of the  weld lantl pe rz i t s  s t resses  across the but t  weld t o  be 

iis:Bd below the y ie ld  s t r e ss  of the ma'cerial. 

hl-2C141 

DOUGLAS BOOSTERS 

TABLE 1 

LENGTH 

DIAMETER 

DRY WElGHT 

PROPELLANTS 

41 FT 6 IN. 
J2.65 rnl 

220 IN. 
(559 cm) 

115!10 LBS i 
15210 kgi i 

100000 LH2ANDL02  LBS i 
(45400 kg) 

6 P&W XLR-115 

90000 LBS 
(40800 kg) 1 

THOR 

53 FT 7 IN. 
rlG 33 m! 

96 iN. 
(244 cm) 

64 :3 i BS 
12920 kg, 

JPL AYD LO2 

PROPELLANT Vr'EIGHT 

ENGINES 

TOTAL THRUST 

58 FT 
(17.68 m1 

260 IN. 
(660 crn) 

21700 LES 
19840 kg, 

LH2 AND LO2 

230000 LBS 
(104300 kg) 

P&W J-2 

200000 LBS 
(90700 kg) 

101000 LBS 
(45800 kg) 

YLR-79-13 

170000 LBS 
!77100.kgi 



The common bulkhead i s  a 1-3/4 inch (4.44 cm) th ick sandwich of 2014-~6 a l loy 

facings and a non-metallic honeycoinb core. This bulkhead serves as an end 

done f o r  both the l iqu id  hydrogen and l iquid  oxygen tanks, and it provides 

insulation t o  obstruct the  flow of heat from the  l iquid  oxygen t o  the  l iquid  

hydrogen. Without the  insulation the  l iquid  oxygen would freeze. The facings 

of the bulkhead a-re each fabricated from nine spherical t r iangle  segments of 

2014-~6 a l loy  sheet. The seGqents are  'formed t o  contour, chem-milled, and 

then b u t t  welded. The peripheral  edges of the  d o ~ e  facings are  b u t t  welded 

t o  2 ~ ~ . 4 - ~ 6  "Y" shaped ex-truck3 rings. The facings are bonded t o  the  core, 

one face being bonded a t  a ' c i~e .  The asserbled comon dcm is then attache6 

t o  the aft doze by structural. lap welds and by mechmicd fasteners. The 

mechanical joint is  mde o ~ L y  i n  the  l i r p i b  Oxygen tank. Holes i n  the hydro- 

gen tank axe avoided i f  possible. The welded joints a lso  serve as seals.  

The rir,g ext,wsicns =e lap ~relded t o  the facings of the comon dorne of the 

S-IV t a k .  Attaciment t o  the a f t  dome i s  s i n i l z r  t o  t h a t  of the S - In .  

The a f t  dome of the  S-IVB i s  a more cowlicated bulkhead. This done i s  a l so  

H e :  from nine segments which are s t re tch  formed from pla te  stock. The 

segnents are chem-milled a f t e r  forming. I n  addition t o  i t s  function as a 

tank do,?le, it a l so  supports the comon bulkhead 2nd the thrus t  structure, on 

which the engines are  mounted. The fo r -~wd par t  of the dome, between the  

a t t schmnt  t o  th? tenk cylinder an& thc ccmon bulkhead joint, i s  s t i f fened 

by I.ntegral waffle ribbing. The wzll ti?i:hess between the common dome and 

t h r u s t  structure joints i s  l e ss  than it 13 ~ f t  of the thrus t  structure joint. 

Engine thrus t  loads reduce the  tension i n  the  dome forward of the th rus t  

s t ructure  joint .  

Aceess t o  the hydrogen tank is through a 23 inch (84 cm) diameter manhole in 

the  center of the  forward dome. A aizilw opening i n  the  a f t  dome provides 

for access t o  the  oQgen tank. 



Inasmuch as the  geoaetry of the waffle s t i f fening used on the  Saturn tanks 

d i f f e r s  from t h a t  used on the  Fhor tanks it w a s  deemed necessary t o  conduct 

t e s t s  t o  determine %he buckling strength of the tank cylisder. Figure 12 

shows a section of a Saturn S-IVB tankbeing prepared f o r  a t e s t .  The t e s t  

specinen and loading f ix tu res  a r e  s h ~ m  i n  Figure 13. This tank t e s t  specimen 

was loaded with an v c i a l  load of 164,500 (74,700 k g ) ,  a sheax load a t  the tap  

of the tank of 42, W0 pounds (19,100 k ~ )  end a bending moment a t  the top of 

the tank of 14,700,000 inch po3;_nds (16,?50,000 cm kg). The compression s t r e s s  

developed near tne xidsection of the tank f o r  t h i s  ultimate design loading 
2 

condition wes approxirately L,380 p s i  (3.08 kg/m ). I n  a subsequent t e s t  

t o  f a i l m e ,  the t m k  cyllrider ~ e ~ d ~ p e d  a shei; buckling s t r ess  of 6,900 p s i  
2 2 (4.85 kg/m ) and a shear s t r e s s  of 3,483 p s i  (2.45 kg/m ). 

S-IIVB TEST I 
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SlVB TEST 
SPEC!L!s-SPd 

Boil-off of the l iqu id  hydrogen frornthe tanks of the S-IV and S-IVB is  held 

t o  a m i n i m  by in te rna l  insulation. Tank w a l l s  and the forward end done 

are insulated by s p e c i a y  reicforced polyurethane Coam l ine rs .  These l i n e r s  

are i n  turn  covered by a f iberglass cloth inrpregnzted with polyurethane 

res in  t o  prevent the  f u e l  from seeping in to  the  insulation. 

Withox% n highly e f f i c i e n t  insulation systcn the boil-of f rote of l iqu id  

hydrogen would be mch  too high. Furtherxiore, the l iquid  owgen i n  the  

condense3 air on the outside surface of the  l iquid  hydrogen tank would 

consti tute a hazaxd during the  ground hold phase of the launch operation. 

For these and other reasons some kind of effective insulation must be used 

on the l iquid  hydrogen tanks. Wiether an external  o r  an in ternal  insulation 

is used ciepends on several  factors.  



The fLberglass ~embrzne useci t3 e w e r  the  in te rna l  insulat ion i n  the Saturn 

tanks t r ans fe r s  t'ne presswe ", t'i:-!-. tnnk w a l l  through the reinforce5 poly- 

urethane foam. The foa-n inx iz i t l c r ,  therefore, is designed t o  withstand the 

corapression Torces invol-;eL i n  t r ~ i s i e r r i n g  the  pressure lgad t o  the l i d .  

'Ihz insulat ion is a l s ~  su32:-,';e?. TO s t r e sses  induced by thermal c o n t r ~ c t i o n  

and by vibration.  

. . All equipnent, persomel,  c 2;. ~ ~ . - i ? r i n J s  require& t o  i n s t d l  the  i n t e x n l  

insulat ion 2--e brought %?to .?'c:i? -;r.7kI. through the 33 inch (84 em) die.:-e ;-.? 

access door i n  the  fo:*~-~-a Cc.-.:. . ::.:x..i'zms preczutionn -e tsken t c  r:::s::_re 

cleanliness, t o  0btai.n good -~-::?:l.:?g) t o  avoid d w g e  t o  the insu.i-aticn. 

External insula t ion i s  prc;g:>:zn:i. " o  r.n e3vznced version of the S-11% vehicle. 

This insula t ion i s  more e.-"fcc:;ive sn? v o ~ ~ l d  p e r a i t  s torsee of f u e l  ii:. en 

orbi t ing vehicle fo r  an e;ci;c:ndeii perio5. BoosL;er p ~ r f c r r ~ m c e  would 2e in- 

provzd by i t s  use beczcse li i s  l igh te r  i n  weight m d  Th-ouid, the re fx2 ,  permit 

more payload t o  be catrried. YLis insulat ion consists  c.? m l t i p l e  12.:)-ors of 

ahminized mylw sheets. ,Z tc~ -e  sheets ~;ouLci be a s s e - & l ~ t  tn to  bi&rLrn:,s of, 

perhaps, 190 lzyers.  One .k)pe blnzkeiet vould bt: sealed ir, tractitm, th? other 

would be sealed w,d then ~;;z.geC! with helium gas. Both t ~ s e s  would  aid 
t o  severa l  t%s t h e i r  c r i s r ind  thickness wnen the ambient presswe i.5 low. 

-. . - 
Vent sys tem pcrz-At 2-sezpc: of excess ges a t  low ambient ;>ressur=. .. :,n 

blankets a f f  or& e~:fectF~.re .-iherml protection f o r  an orbi2ir.g vehicl?. 

Metal shrouds would be xsed t o  protect  the  insulat ion while tine vehicl.5 i s  

on the  &rc-z?r? and C u r i r g  cscenr,. As  he vehTc1e rimes ol;",of tk.c .I';-:)*?here 

the  shrouds would be broken away and e jec ted by an ordnance device, Tisyre 14. 



FIGURE 14 



I1 1 ~ I 4 ~ ~  SELECTION 

A s t r u c t u r a l  material  sui table  f o r  fabrication of a cryogenic tank m s t  

possess ce r t a in  roechanical properties, aad these propert ies must not be 

e&versePj affected by acceptzble fabrication practices or  by exposure t o  

cryogenic t e q e r a t u r e s .  No one meterial ideal ly  possesses the required 

propert ies.  A good choice becomes, then, a judicious compromise. 

St rac tur i i l  performance of a cryogenic tank is l imited by residual  s t resses  

zrd defects  inciuced i n  the  structure during fabrication, and by the d u c t i l i t y  

tmd f rac tu re  toughness of the tank rnetzl aqd i t s  welded joints .  Strength, 

d ~ ~ c t i l i t y ,  weldability, tou$hness, and f abr icabi l i ty  of a metal must 5e 

retisfactoz-y m d  w ? l l  established before a materral i s  seriously consiciered 

f o r  a high performance cank. Too much optimism about marginal character- 

i s t i c s  could be cause fo r  eqens ive  and major changes when a progrm reaches 

En a*~z?.nced stage of developzent. A good design is deterdned by a w e l l  

planned prcgrara of pretest ing,  t h a t  i s ,  by t e s t ing  representative structure.  

Tne objectives of such a proaa?l  are  no",wt t o  produce data, but ra ther  

t o  produce inforxmtion which i s  needed t o  evaluate o design concept, t o  

reveal  s h ~ r t c o 3 i n s s  of design, I'abricaCon, and inspection, and t o  determine 

a l t e r n a t e  designs. I n  generz-1, a progrm would include t e s t s  of welded 

joints, of stiffenec? s z r u c t u e ,  of bonded or  mechanically joined structure,  

and, perhaps, of photoelast ic xodels t o  determine the magnitude of s t r e s s  

concentratiions . Inspection tecimiques m s t  c o q l e k n t  fabrication tech- 

niques, or the sor?~lclness of a structure w i l l  not be deternimble.  

The crutuaf depencience of a l l  these parameters f o r m  the c r i t e r i a  fo r  the 

se lec t ion of a material.  

A t  t h e  comencenent of design studies f o r  the Thor, several  candidate metals 

%-ere se lec ted f o r  consideration. The Douglas C o ~ a n y  nad extensive experience 

with 2024 and 7075 al loys  i n  the fabrication of primary structure fo r  a i r -  

craf t ,  with 6061 a l l o y  i n  the  fabrication of other structure,  and with 2014 

alloy i n  forgings, ed rus ions ,  and sheet fo r  a i r c r a f t  s tructure.  



It was evident t h a t  sealing z. tank f o r  cryogenic f lu ids  would be a serious 

problem ttnless m j o r  p a r t s  of the txzk  structure were joined by welding. 

Welding character is t ics  of 2024 and 7075 alloys were not sa t i s fac to ry  f o r  

t h i s  ayplication, Welding character is t ics  of 6061 a l loy  were known t o  be 

qui te  sa t i s fac tcry ,  but  a serious weight penalty would resu l t  i f  this a l l o y  

vere selected. The choice narromd t o  2014 a l loy or, perhaps, a new alloy.  

I n  1955, 2014 a l loy  was t'ne only a lu~inum a l loy  which seeaed t o  be sui table  

f o r  the  job. Before miking a def in i te  choice of 2014 alloy, an extensive 

develapxent study of b u t t  weldel joints  i n  t h i s  a l loy  was undertaken. During 

t h i s  slladjr welding techniqucn ;;?rs <-.-reloped t o  the point  where strength and 

weld r e l i a b i l i t y  were no longer conaLdered a pronlem. It was decided, however, 

t o  design the welded jo ints  f o r  :i.;,-.tively low stresses,  because operational 

experience was lacking f o r  a E g h  gc.rformance vehicle assembled by welding. 

When design studies f o r  the Sc.vlrn ' - 1 V  began a r e la t ive ly  new aluminum 

alloy, 22x9, vhich -as or:grc~LL; ;. troduced f o r  service a t  elevated t e q e r a -  

ture,  had just  besn sh~wr: t c  eel. :Ic high strength and good d u c t i l i t y  i n  

welds& joints.  Farthermore, i.2 3,:<nt efficiency under b iax ia l  loading wzs 

founri t o  be higher t h ~ i n  could be ci,',slned with other high s t r e n a h  weldable 

alloys. This r a t e r i a l  required pos; weld heat treatment and aging t o  develop 

the superior p r q e r z i e s  of ~ e l d e d  io ints .  Tnis kind of processing would be 

a p r ~ t r t i c a l  impossibility v i t h  a terx the s i ze  of the  S-IV Saturn vehicle. 

W i t b u t  post  wel-d heat t r e z t r i 3 t  the weld elongation propert ies a r e  low an& 

there  i s  no strength acivzntsge over 2014 alloy. For these reasons and i n  

. v i e w  of the  successful production experience with the  Thor it was decided 

that 2OL4 al loy would be used In Saturn product~on.  

The ultimate t ens i l e  and yie ld  t ens i l e  strengths of 2014-~6 a l loy  are  superior 

t o  202446 alloy, and, a s  with most aluminum alloys, the  strength increases 

as the temperature decreases. The var ia t ion of strength with temperature i s  

shown i n  Figures 15 and 16. A very s ignif icant  increase i n  strength is 

available f o r  those design conditions which are  c r i t i c a l  a t  cryogenic 

temperatures. 
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Elongation a l s o  increases a s  the temperature decreases. However, it is  of 

greater  significance t h a t  the elongation i n  the weld area decreases appreci- 

ably a s  the teriperzture decreases, Figure 17. Modulus of e l a s t i c i ty ,  

Figure 18, is higher at lower terqperatures, and t h i s  i s  o lso  of advantage 

i f  s h e l l  buckding is  c r i t i c a l  a t  cryogenic temperatures. 

A comparison between the  strengths of 2014-~6 and 2219-~81 alloys i s  

, przsented i n  Figure 19. The strength advantage of 2014-~6 throughout the  

te~nperature range i s  apparent. The advantage of 2219-~81 would be i n  the  

strength of fusion welded joints, i f  post heat treatment was not necessary. 
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The e f f e c t  of  temperature on the  s t rength  of b u t t  welded jo in ts  i n  the 

2014-~6 a l l o y  i s  given i n  Figure 20. Strength and elongation proper t ies  

of b u t t  welds i n  2219 a l l o x  are  given i n  Table 2. These values are fo r  

room temperature. Elonga&ion is  even lower a t  cryogenic temperature. 

After pos t  weld heat  treatment the s trength and elongation a r e  qui te  good, 

but  t h e  condition i s  impract ical  of achievement i n  a large tank. S-ength 

a s  given f o r  both a l loys  i s  from t e s t  coupons loaded i n  simple tens ion  

nor& t o  t h e  weld l i n e .  Strength and e long- t ion  are  lower i n  t h e  welded 

s t ruc tu re  of a tank assenbly a s  a consequence of r e s i d ~ a l  s t r e s ses  and 

severa l  kirids of defects  which a re  comoa t o  welded jo in ts .  These r e s idua l  

s t r e s ses  and defects  a r e  not subject  t o  a s  complete cont ro l  a s  i s  desired. 

Shrinkage of t'le weld introciuces r e s idua l  s t resses ,  which can, occas iond ly  

be a s e r i o ~ i s  problem i n  a la rge  tank assembly. Allowance mst be made f o r  

these l e s s  control lable fac tors .  Designing welded jo in ts  t o  work a t  reduced 

s t r e s s  l e v e l s  i s  an e f f ec t ive  neans of obtaining a s t r u c t u r a l l y  r e l i a b l e  

joint .  S t r e s ses  norinal t o  a weld l i n e  a r e  r ead i ly  reduced by making the  weld 

i n  a l o c a l l y  th icker  sect ion.  A Locally thicKer sec t ion  may be of no help 

i n  reducing s t r e s ses  p a r a l l e l  t o  a weld l i ne .  Care mst be exercised i n  
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FIGURE 20 REF 3 



desfigning a ~ L r u c t u r e  t o  prevent c r i t i c a l  cornbinations of s t resses  from 

occ=ring dorig  a weld Line. I f  the weld does not possess suff ic ient  

duci;ility, erackdng transverse t h r o ~ ~ g h  the weld my resu l t .  Heavier 

g-es my k-ave -to be used over a major portion of t h e  structure t o  obtain 

 lo=^ s t resses .  If' t h i s  should be the  case, a lower streng"vh material 

with superLGs welding character is t ics  might be a be t t e r  choice, f o r  it 

m y  pern i t  A e  use of a higher s t r e s s  ievel. 

TABLE 2 M-20135 
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Design allowable s t resses  fo r  welded joints should be based on extensive 

t e s t  data. The allowable strengths for  bu t t  welded joints presented i n  

Table 3 are  s t a t i s t i c a l l y  besed on Douglas t e s t  data. 

A zoqar ison of the  strengths of bu t t  welded joints i n  2014-T6, 2219-~87 

and a new alloy, ~7106,  is presented i n  Figure 21. The as  welded strength 

and d u c t i l i t y  of the new alloy, an ALCOA proprietary product, i s  seen t o  

be very much superior t o  tha t  of be t t e r  known high strength weldable alloys. 

The notch sens i t iv i ty  of t h i s  metal a t  -320'~ (-160"~) is a lso  mch  superior 

t o  other veldable alloys, Figure 22. I f  a. new design were being i n i t i a t e d  

a t  t h i s  time, very serious consideration would be given t o  the use of t h i s  

new alloy.  

Other materials might a l so  be considered i n  the design of a new cryogenic 

tank. Some of the titanium alloys would cer ta inly  be potentidl  materials. 

Beryllium and 'aerylliu&aluxir.un alloys (which are not al loys i n  a metal- 

lu rg ica l  sense) m d  composite materials might a l so  be considered. Some of 

these m t e r i a l s  are much m r e  expensive than aluminum alloys, hovever, in  

the  fzbricated s t a t e  the cost difference, i f  any, would be of l i t t l e  cnn- 

sequence. Titanium alloys w e  now i n  use fo r  some smaller tanics. For 

example, titanium bot t les ,  fabricated from 6 & 4 ~  alloy, are used f o r  

pressurization of the l iquid  oxygen tanks of the Saturn S - I V  and S-IVB 

vehicles. These tanks, which contain helium u d e r  pressure, axe immersed 

in  the  l iquid  hydrogen tanic. Some of the titanium alloys axe very sensitive 

t o  the  presence of sm11 cracks a t  cryogenic temperatures, and selection of 

a material fo r  use a t  these temperatures must be mde with proper allowance 

for  f racture  toughness. I f  a t i t a n i m  al loy were t o  be selected f o r  e lzrge 

tank, s tabi l iza t ion of the wall structure by pressure, a t  l e a s t  i n  par%, 

should. be considered. It might, for  exanple, be an e f f i c ien t  design for a 

cryogenic tank which is suspended inside a s h e l l  which i s  designed t o  carry 

axial ,  shear, and bending loads induced in the  stage. 



Beryllium has been used i n  space vehicle inter-stage structure, but has not 

as  yet  been used i n  tank design. The metal i s  d i f f i c u l t  t o  fabr ica te  and 

has low f rac tu re  toughness. These shortcomings are overcone t o  a large  

extent  i n  the n e w  beryllium-aluminum alloys. Much study w i l l  have t o  be 

given t o  these new al loys  t o  determine whether other of t h e i r  character- 

i s t i c s  render the  w t a l s  useful  f o r  t a ~ k  design. 
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Fiberglass composites a r e  used f o r  some'bottles and tanks. However, t h i s  

construction has not proven t o  be sa t is fac tory  f o r  cryogenic tanks. The 

matrix tends t o  crack and leak when used t o  contain l iquid  hydrogen. Studies 

are beicg made t o  deterfine the character is t ics  of metal l ined fi3erglass 

tanks, which appear t o  show some advantage and may prove adequate f o r  certain 

kinds of cryogenic tanks. Fiberglass constructed tanks exhibit  a s i g n i f i c ~ n t  

Loss of s t rength  a f t e r  a r e l a t ive ly  t'ew number of cyclic pressurization 

loadings. 
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IEX. QUALITY CONTROL 

The exhaustive engineering and development e f fo r t s  required fo r  the  design 

of a space vehicle would be t o t a l l y  nu l l i f i ed  without an appropriately 

designed and executed quali ty control program. The quali ty control methods 

u t i l i z e  established techniques-and employ well developed tools.  Quality 

control  is exercised from the  time of procurement of raw material t o  the  

ac tua l  f l i g h t  of the vehicle. 

Manufacturing personnel a re  trained and ce r t i f i ed  f o r  such functions as  

welding, soldering, adhesive bonding and sealing. I n  addition, quali ty 

control  personnel are t ra ined in  siinilar functions and a l so  receive special  

t ra ining i n  inspection techniques, such as i n  the  use of ultrasonics and 

radiogrepky . 
Raw materials a r e  controlled t o  specific requirements established by the 

design function, and are  chemically and physically examined t o  assure 

conformance t o  applicable specifications. 

Tooling and equipment used f o r  fabrication purposes are inspected and 

c e r t i f i e d  at regulss intervals.  hleasuring equipment used is calibrated t o  

standards establishec? by the  United Sta tes  National W e a u  of Standards. 

St ructural  welding is accomplishedby ce r t i f i ed  welders i n  the  presence of 

a welding engineer. Weld samples are  taken p r io r  t o  the i n i t i a t i o n  of a 

production weld and are t e s ted  for  acceptabil i ty t o  a standard established 

by engineering. The inspection techniques used t o  determine weld conformance 

axe : 

1. A deta i led  visual  examination, including measurement of weld 

penetration. 

2. Dye penetrant inspection fo r  indicaticas of surface cracks o r  

other surf  ace imperfect ions. 

3. Radiog'raphy fo r  determining other than surf  ace defects . 
All weld defects a re  removed, and the  affected areas a re  rewelded and 

re-inspected f o r  conformance t o  the  or iginal  standards. 



Ultrasonic shear wave standards are  being established, and may be used t o  

supplement weld inspection techniques. 

A surface replication rrtethod fo r  defect determination is being studied. 

This method shows promise of finding minute flaws, which extend t o  the 

surface, but are not detectable by the dye penetrant method. 

Insulation is  applied t o  the in te r io r  of cryogenic tanks i n  a caxefvllly con- 

t r o l l e d  atmosphere by ce r t i f i ed  personnel. Adhesion of such insulation i s  

ver i f ied  by pulse-echo ultrasonic techniques. Where lack of adhesion i s  ev- 

ident, the insulation and old adhesive is removed, replaced and re-inspected, 

In addition t o  the  product quality controls noted above, an extensive 

qualif ication and t e s t  program is required t o  assure both manufacturing 

and design in tegr i ty .  This program f o r  the  Saturn S-IW stage, f o r  example, 

consists of: 

1. "Static" t e s t  f i r i n g  stage, made of heavy gauge 's tainless s teel ,  

which is required t o  prove the  major design components of the  

propulsion system. Inforrmtion fron t e s t  f i r ings ,  which are 

accanplished early i n  the program, provide data f o r  design 

changes, thereby improving r e l i a b i l i t y  and performance. 

2. A "Dynamics" stage is  required t o  determine l a t e r a l  and tors ional  

vibration characterist ics f o r  each vehicle configuration. 

3. An "All-Systems" stage is required t o  verify tankage capacity, 

insulation, p n e u t i c  systems, and general compatibility with 

all associated equipment. 

4. A "Facil i t ies" stage is required t o  checkout interfaces with other 

system stages, and a l so  t o  perrnit development of loading, unloading 

and pressurizing techniques. 

5. A "Structural Test Cylinder" i s  required t o  determine the  a b i l i t y  

of the  cylinder t o  withstand compression loads. 

In addition t o  the comprehensive t e s t  program, each f l i g h t  stage is hydro- 

s t a t i c a l l y  t e s ted  t o  a proof pressure of f ive  percent ( 5 % )  above the  l i m i t  

load, and is a l so  subjected t o  a full duration s t a t i c  f i r ing.  



The Saturn S-IVB stage is  manufactured, f o r  the most par t ,  a t  the new Douglas 

Space Center. Special t m l i n g  located a t  other Douglas f a c i l i t i e s  i s  used 

i n  same fabr ica t ion operations. Technologies used i n t h e  manufacture of Thor 

and Saturn S - I V  and S-IYB tanks include metal rercoval by machining and by 

chemical milling, forming by stretching and bending, chemical bonding, weid- 

ing, and mechanical fastening. These technologies have reached a high s t a t e  

of develqnent ,  and i n  the production of cryogenic tanks these advancemnts 

asc exploited wherever possible.  

The discussion of manufacturim methods is i n  re la t ion only t o  tke production 

s f  the Sa:~u-n S-IW tad=, inasmch a s  s i z i l a r  methods are use2 i n  prcduction 

elf the  o ther  ~EJIISS. 

Production begins with mchining the  waffle pat tern  i n  f l a t  p la tes  fo r  the  

tank mUs and with s t r e tch  fox-ming of f l a t  p l ~ t e s  f o r  t& domes. The 

waffle p a t t e r n  i s  mcnined on a Giddings and Lewis horizontal skin mi l l ,  

Figure 23. A close up of thc  waffle pat tern  is seen i n  Figure 2ii. M t e r  the  

p l a t e  segment is machined, it i s  formed t o  the contour of the  tank. Withoxt 

some s u p ~ o r t  the  r ibs  would buckle during the  forming. Support i s  prcviCed 

b y  square polyethelene blocks which replace the  m t e r i a l  wnich was machined 

away. Placemertt of the  bloc'ks is  shown i n  Figure 25. With the blocks i n  

place, the w a l l .  segment i s  ready f o r  forming. I n  t h i s  operation the tank 

w a U l  aegzlerrt is progressively formed en a Verson Press, as shorn i n  Figure 

26. After the  segment has been formed t o  the proper contour it i s  ready 

f o r  welding. Seven tank wL1.  segnents are  assembled i n  a specia l  f ix tu re  

which holds them i n  the  proper posit ions f o r  welding. This piece of tooling 

is shown i n  Figures 27 ma 23. The f ix tu re  with i t s  tan.! segments i s  placed 

beneath a Pandjir is  automatic velder, which b u t t  welds together the two 

segmrjnts at  the bottom of the  f ixture.  All welds a re  made with the consuma- 

ble electrode MIG (ntt3tallic ine r t  gas) process using Type 4043 f i l l e r  welding 

rod. However, TIG (tungsten ine r t  gas) welding i s  used t o  i n s t a l l  all f i l l ,  

drain, pressurization,  and vent line f i t t i n g s .  The edges of the  segments, . . 
which w e  stepped i n  a previous machining operation, are  clamped i n  proper 
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posit ion with copper quench bars, and then the  segments are bu t t  welded 

together in two passes, as the  Pandjir is  welder moves over the seam, 

F-e 29. k i l l  welds are  mde with the work under the welding head, and i n  

t h e  Saturn tanks a l l  welds are mde from one side of the  w a l l .  Molten metal 

is drawn by gravity force t o  the  bottom side of the joint  and weld penetra- 

t i o n  is c o ~ t r o l l e d  by controlling the  size of the  bead formed on the  bottom 

s l a e  of the  w?ld seam. As stated, th ick segments are welded in  two passes. 

A clo'se up of the  welding operation i s  shown i n  Figure 30. A welded tank 

cylinder is  shorn i n  Figure 31. The eQes  of the  cylinder are machined, 

Figure 32, before the end f i t t i n g s  are attached. Stretch formed extruded 

angles are b u t t  welded t o  each en& of the tank cylinder. One flange of the  

snp;le extends outwarZ from the  tsok wall t o  provide a means for  handling 

t h e  tank ~ n d  f o r  attaching interstage ~ t r u c t u r e .  

Segmnts fo r  t h e  tank &oms are s t re tch formed over male dies, Figure 33. 

Dimfnsioas of the  p la te  are of such s ize  t h a t  two spherical t r iangle  tank 

dcm sewents  a r e  cut from each s t re tch  formed pla te .  Stretch forming is 

done with the p la tes  i n  the annealed condition. After the  f i r s t  stretch,  

the pla tes  are solckion heat treated and then stretched again before natural 

aging occurs. The second s t re tch  i s  mde t o  remove contow dis tor t ions  

Khich resu l t  from the heat treatment. After the second s t re tch  the pla tes  

are t o  contour within a tolerance of 2 1/32 inch (2 .79 am) on the 130 inch 

(330 em) spherical  radius. After the p la tes  have been cut t o  form the 

qher icL1  triangle segments they are chen-milled. XeriCiam.1 r i b s  and Lands 

f o r  welding are l e f t  on the p la tes  i n  the chea-milling operation. The for- 

~ m ~ d  p a r t  o? t h e  a f t  dome a l so  has a m f f l e  pat tern  chem-nilled in the p a r t  

of the d o ~ 2  f o ~ ~ a r d  of the a t tach point of the common bulkhead. After chem- 

milling has been c o q l e t e d  the sewrr.ts are prepared for  welding. lu'in: 

spherical  t r iangle  segments are  bu t t  welded togethor t o  form a dame. The 

se-nts are held in place in a specia l  welding fixture,  Tigure 34. This 

fixture is  used t o  weld the  fore  and a f t  end domes and the  common dome faces. 

The common bulkhead segnents are shown i n  the f ix tu re  i n  Figure 34. End doine 

segments extend t o  the  base of the  fidxture, Figure 35. The f ix ture  ro ta tes  

the  work uncer the velding head, which i s  shown a t  the top of the  picture.  

Edges of the common bulkhead segments are clamped in  place by titanium 
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qaench bars.  Copper bars are  used t o  clamp the segaents of the  forward and 

the  aft do:zs. T i t m i m  quench bars are required for  the ccmmn b~ficiieac? 

feces because the  faces of t h l s  d c a e  a re  thinner than the end dones, ,and 

heat flow from t h e  veld zone must be controlled t o  a di f ferent  ra te .  

After the cornon bulPJlead fzcss a r e  welded, a c i rcular  p l a t e  plug is bu t t  

welded t o  the land areas at -the center of the faces. All weld seam =e 

then t r i m d  t o  present a ~ 1 ~ 0 3 t h  surface fo r  boccijng t o  the  honeycoxb core. 

Stretch formed "Y" shaped extrusions Flre welded t a  the peripheral  edges of 

the  c o m n  bulkhsad faces t o  per,nit att3chment of the  comon bulkhead t o  the  

a f t  dome. On t h e  S- IV  s+,age, the  extrusions are lap  welded t o  the  faces, 

whereas on the  S-IV3 s tage  the  joint  i s  e. but t  weld, Figure 36. 

The common bulkhead sandwich s t ructure  i s  fabricated on a spherical  male 

die. This die is equipped with a suction unit, which is employed t o  hold 

the  aft face of the  bulkhead firmly against the d ie  while the honeycomb 

care i s  being bon&ed t o  the  face. The die is contained i n  a pressure 

chanber, as shown in Figures 37, 38, and 39. ' 



The a f t  face of the common bulkhead is thoroughly cieaned and then secured 

t o  the  spherical  d ie  by suction. A f i lm of epoxy resin, f o r  bondi~s ,  i s  

l a i d  over the  fece, and then fiberglass honeycomb core is l a i d  i n  place i n  

sections as  large as 18 inches (45.7 cm) by 48 inches (122 cm). After the  

core is i n  place, the  assembly is covered by a sheet of mosite rubber, Figure 

37. A i r  is  then evacuated f romthe honeycomb, draw- the  rubber cover 

t i g h t  against the  core and the  core against the  face. While under t h i s  

pressure the a f t  bond is given a firs.c cure a t  330'~ (166'~). 

Contour checking and hand finishing of the forward face of the core is 

necessary prior t o  bonding the core t o  the  forward face of the  common bulk- 

head. Pfter  the core i s  brought t o  required contour a f i lm of epoxy res in  

is l a i d  over it, and the forwwd face of the dome is s e t  i n  place. The 

assembly i s  covered by a sheet of m s i t e  rubber, which is  used t o  make a 

s e a l  fo r  the core section of the assembly. The core i s  evacuated, the  
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l i d  of the  pressure chaniber i s  closed, Figure 39, and a pressure of 45 psi 

(3.06 a t u )  inside the chamber i s  used t o  force the  faces against the core. 

Bonds are  cured a t  330'~ (166~~) .  

After the  bonds have been cured, the bulkhead is removed from the  chamber 

and the  two "Y" flanges are bu t t  welded together, P i w e  36. The outboard 

face of these flanges is then machined t o  f i t  the contour of the  aft dome. 

I n  the  next operation, the common bulkhead is attached t o  the a f t  dome. 

But beforehand, the  a f t  dome is placed i n  a f ix ture  f o r  machining of the 

33 inch (84 cm) access hole cover at tach flanges, Figure 40. A similar m- 

chining operation is done on the forward dome. The flanges of the  common 

bulkhead are  bolted t o  the  a f t  dome. All b o l t  attachments are made t o  the 

liquid oxygen tank. The forward edge of the  flange on the  forward face of the  

common bulkhead i s  f i l l e t  welded t o  the  a f t  dome with the tank i n  a horizontal 

position, a s  i n  Figure 41. The a f t  edge of the  aft flange of the  common 



MbCHffdING AFT 
D6T1'E ACCESS 
MBLE 

FIGURE 40 

LOX mP9K 

FIGURE 41 



b W e a 2  is f i l l e t  welded t o  the a f t  done with the tank a t  r igh t  angles t o  

its forner position, t h a t  i s ,  with the axis  of synrrnetry of the tank i n  a 

horizontal. position. The a f t  weld is made with a t o o l  which reaches in to  

the l iqu id  oxygen tank through the access hole. Both welds are made with a 

fixed welding f ix ture ;  the tank is rotated about i ts  zxis of symmetry t o  

advance the  weld. Figure 41 shows a l iquid  oxygen tank ready t o  be placed 

i n  the tooling tower f o r  asserSly of the l iqu id  hydrogen tank. 

Mter -Lke l iquid  oxygen tank i S  arranged i n  the lower end of the  tooling 

to*li?r,, Figure 42, the tank cylinder i s  lowered in to  place. The assembled 

s t ruct .ae  i s  shown i n  Figure 43. A f i l l e t  weld i s  mde on the inside of the  

tvrlr cylinder t o  connect the cylinder t o  the  a f t  dome, Figure 44. This weld 

is mde tri_th a welding head ~ ? h i c h  reackes do;m in to  the tank, Figure h5. 

The weldlng head remains stat ionary and the  work rota tes .  The forward dome 

is then arranged in  the tooling tower a t  the upper end of the tank cylinder. 

In  t h i s  posi t ion a f i l l e t  weld i s  m~de on the  outside of the forward d o e  

eomecti.ng it t o  the tank w a l l ,  Figure 46. The whole tank i s  then turned 

tapside 60m and repositioned i n  t h e  tooling tower. The outside weld of the  

FIGURE 42 
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aft dome, which is now at the top, is made with a fillet joint. Finally, 

the inside fillet weld of the forward dome is nmde with a welding tool 

which reaches up i n t o  the tank t h r o ' i h  the access hole. 

The finished S-IVB tank, as shown in Figure 47, is ready for the installation 

of thr~st structure, interstage structure and various accessory equipment. 
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Although considerable discussion has been given t o  the various techniques 

which-are involved i n  producing a tank f o r  cryogenic f luids,  no special. 

discussion has been given t o  processing techniques. These techniques axe 

ut i l ized,  d i rec t ly  or indirectly, i n  a l l  of the tasks which were discussed, 

and the  success o r  fa i lu re  of any t ask  is in soille measure dependent on the 

character is t ics  and resu l t s  of the  processing techniques invoived. 

Optimization of the  various tasks and t h e i r  interrelat ionship yields the  

essence necessary t o  a reliable,  high performance product, and some measure- 

ment of how well t h l s  has been acccql ished can be obtained by a%ser-cing 

the  performance of the product. Numerous qualif ication t es t s ,  for  observance 

of performance, are  made as  developxnent progresses. These t e s t s  provide 

ins ight  in to  the  quali ty of the  product, but, the f i r s t  comprehensive t e s t  of 

performance is the f i r s t  f l i g h t  of the vehicle. This spectacular f l i g h t  of 

the  S-IV stage i n  the Saturn 1 configuration took place on January 29, 1964, 

Figure 48. Tfie f l i g h t  was almost flawless, and it appears t h a t  a good 

beginning nas been made fo r  what, hopefully, w i i i  be a long and successfui. 

h is tory  of the  Saturn S-IV and S-IVB space vehicles. 
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1. Douglas Aircraft  Company Test Data. 

2. Data, Courtesy the Aluminum Company of America. 

3. Cryagenic Yaterials  Data Handbook, U. S. Department of 
Commerce. 

4. ~ ~ ~ - m ~ - 6 2 - 2 5 8 ,  Part 11, Physical and Mechanical Properties 
of Pressure Vessel Yl te r i a l s  f o r  Application i n  a Cryogenic 
Environment. 
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