


ABSTRACT

The motion in a convectively unstable region is expanded
into an ensemble 6f c0nvectivelcells. Each of these cells
interacts with the surrounding medium according to the semi-
empirical model proposed by Turner (1963). Fossible detailed
models of the flow patterns within each cell are presented.
The radius and velocity of these cells are given as functions
of distance moved. The convective flux and rms velocity are
given as averages over the ensemble of cells. As in the
standard mixing length theory the principle uncertainty re-

mains the average initial radius of the cells.



I. INTRODUCTION

Many problems in astrophysics require the knowledge of convective
energy fluxes and convective velocities. At present all applied theoret-
ical treatments of such problems make use of the mixing length theory.

This type of theory was first proposed by Prandtl (1932) for use in
treating meteorological convection. Siedentopf (1933a,b, 1935) and
Biermann (1937, 1942) then applied the mixing length theory to the study
of stellar atmospheres and interiors. Important improvements were later
added to this theory by Vitense (1953) and Bohm-Vitense (1958). This last
work gives the mixing length theory as is used in most recent studies of
stellar interiors and atmospheres.

In contrast, most theoretical descriptions of convection start frém
a modal analysis of the equations of motion. In principle this approach
requires that the linearized equations of motion be solved as an eigenvalue
problem. The resﬁlting eigenmodes must then be coupled through the non-
linear terms in the equation of motion [(v* grad) v and (v - grad)T'], some
form of statistical cloture approximation must be applied and finally the
average amplitudes derived to give the convective flux. Some progress has
been made on individual parts of this program; however, the varying degree

. of approximation used in the different parts renders the results incompat-
ible.  Bdhm (1963a,b) has carried out the first stage of the calculation
with very few approximations, but made no attempt at the remaining stages.
In fact, it is doubtful that the subsequent steps can be carried out at all,
since it has never been shown that Bohm's fourth order differéﬁtial opefator
is self-adjoint. If, as Spiegel (1965) has indicated, this operator is not
self-adjoint, then the prospects for coupling the non-orthogonal modes are

not good.



There have been numerous procedures suggested for mode coupling and
averaging: ILedoux, Schwarzschild, and Spiegel (1961) used Heisenberg (1948)
turbulent viscosity, Unno (1961) adjusted the turbulent viscosity to set
the Reynolds number to 30, Kraichnan (1959a,b, 1964, 1965) uséd the direct
interaction approximation, Edwards (1964) used the random phase approxima-
tion, and Herring (1965) used the self-consistent field approximation. None
of these treatments used realistic normal modes and all depended strongly
on the simple properties of the Fourrier modes.

In view of the limitations on the applicability of the modal analysis
theories and the desirability of a theory with the simplicity of the mixing
length theory, we shall adopt in this paper a model of the convective motion
which is closely akin to the mixing length model. We shall expand the'
motion into an ensemble of convective cells and follow the history of an
individual cell with the full non-linear equations of motion. The convec-
tive velocity and flux is then given by an average over this ensemble. In
the present work we leave the average initial radius of these cells as an
unspecified parameter. The description of the behavior of these cells
includes the interaction between the cells and their environment according
to the semi-empirical model proposed by Turner (1963). Turner's model
involves a tendency for the mass of the convective cell to increase by the
entrainment of Eurrounding matter into the organized cell and a tendency
for the mass of the cell to decrease by a process of surface errosion due
to random thrusts of matter from the surrounding turbulent medium into the
organized flow patterns of the cell. This model thus proposés a superposi-
tion of organized cellular motion on a smaller scale, random turbulent
velocity field. Sections II, IIIa, and IIIb examine the properties of the

organized cells while §} IITe, IV, and V examine some aspects of the



interrelation of these velocity fields.

II. THE ORGANIZED INTERNAL MOTION OF A CONVECTIVE CELL

A rising cell of hot gas in the earth's atmosphere is known as a
convective thermal. Morton, Taylor, and Turner (1956) have described the
large scale behavior of these convective cells by using the concept of
entrainment, whereby some of the surrounding undisturbed matter is swept
into the cell and mixed with the matter inside. This convective thermal
model was applied by Turner (1963) to the motion of convective cells in
turbulent surroundings. He tested his theory through experiments with salt
solution convective cells in turbulent pure water and found good agreecment.
He (Turner 1964a,b) then added some detail to the model by assuming that
the internal motion of the cell could be represented by a Hill spherical
vortex (Hill 1894; Lamb 1932, Art. 165).

A true convective thermal is produced by the sudden appearance of a
small but strong density fluctuation. In a stellar atmosphere there is no
source of such strong density fluctuations and a convective cell must be
initiated by ﬁhe chance association of several small fragments which have
a net vertical momentum. This vertical motion then produces a small density
fluctuation over the entire moving region. This region initially moves as
a unit wifh little organized internal motion. Consequently, Turner's de-
tailed model probably does not accurately represent the motion within a

stellar convective cell at all stages of its development. We examine below
& family of spherical vorticies which contains as special caséé Hill's fortex
and a uniformly moving spherical region with no internal motion.

We measure velocities with respect to a stationary coordinate system,

but project these velocities onto a spherical coordinate system moving with



the convective cell. We take the z axis of the system to be in the vertical
direction measured positive inward. ILet U be the velocity of the center of
the cell and b be its radius. For an axially symmetric flow there always

exists a stream function V¥ which we take to define the vorticies by

3
U b 2
¥ = =3 rsin@ forr >b
and (1)
n
U r 2 2
v -en[n+3-3(b)]r sin“@ for r <b

Velocities in a spherical coordinate system are related to the stream

function by
a»
Vr = - 5 J: (a—‘g') (2)
r sin © r
_ 1 oy
Yo T Trsino (3}—)9 : (3)

The velocities for this family of vortices are

3
. Ub_
'vr £ r3 cos ©
forr >b (%)
3
Vo = L2 sin ©
(] 3
2r
and
v S -g|:n+3-3(£)n]cosg
r n b _
for r < b. (5)



When n = 2 the vortex is just Hill's vortex which moves at constant velocity
ﬁhen bouyancy forces are absent. In the limit n + co, the velocity for

r < b just becomes UZ where Z is the unit vector in the vertical direction.
In this limit there is a discontinuity in v

]
These vortices change with time unless n = 2 and curl (gp'Z) =0

atr=b.

where p' and g are the density fluctuation and acceleration of gravity
respectively. When there is a discontinuity or sharp gradient in p' near

the edge of the convective cell then curl (gp'Z) = gp'o sin 0 ®(r-b) §

where p'. is the relatively smooth interior value of p' and § is the unit

0

vector in the azmuthal direction. There is thus a tendency to produce

vorticity u&,near the boundary of the convective cell. The velocities in

equations (5) give

n-1

3U
U = T (n +3) rbn sin @ (6)

which in the limit of large n is primarily confined to the region just
inside of r = b and matches the O dependence of curl (gp'Z).

The buoyancy forces continually tend to produce a vortex with a large
n vhile the inertial forces tend to produce a vortex with n = 2. The
precise result of these competing tendencies cannot be obtained without a
detailed solution of the equations of motion; however, n can reasonably be
expected to be somewhat greater than 2.

The nature of these vortices is most clearly illustrated by plotting
lines of constant ¥ for velocities measured with respect to the center of
the cell. Figures 1 and 2 show these streamlines for the cases n = 2 and 8.

2

In each case the interval in V¥ between successive streamlinec was 0.045Ub".

The density of streamlines indicates the velocity of flow rel 'ive to the



center of the cell and the motion of an individual particle of fluid is

along the streamline.

ITTI. THE INTEGRATED PROPERTIES

a) Kinetic Energy and Vertical Impulse

The total kinetic energy associated with the organized motion of a
single convective cell of the type éiscussed above is simply the integral
over all space of the kinetic energy density % Dlvlg. The appropriate
velocities are those given in equations (4) and (5). Iet the total kinetic
energy associated with the organized cell be Torg and the volume inside

r = b be Y. The integral of the kinetic energy density gives

. p"
TOI‘g = = o U2 (7)
with
"o 3n + 9
Ly ' (8)

Some care is necessary in discussing the total vertical impulse since
the surface integral of the pressure fluctuation does not vanish as r -+ co.
Since the velocity for r > Db is defivable from a velocity potential, the
total vertical momentum between any pair of concentric spheres must vanish
by Gauss' theorem. Thus we need only examine the momentum for r <b and
the pressure fluctuations on the surface r = b. Note that the presence of
these pressure fluctuations requires that we use the concept of impulse
rather than momentum alone. The flow for r > b is the same as the flow
sround a solid sphere moving in an inviscid incompressible fluid. There-
fore the pressure reactance must add 0.5 PYU to the total vertical impulse

just as in this simpler problem (Iemb 1932, Art. 92). We now determine



the total vertical impulse PE associated with a single convective cell by
integrating the vertical momentum density pv, over the region r <b and

adding 0.5 pYU. We obtain

P o= v'ovU (9)
with

v _ 9n 4+ 13

' ® R+ 6 (20)

In a time ©®t the changes in the total kinetic energy 6Ttotal

total vertical impulse are just due to the total bouyancy force %Ygp'.

and

We have then
o7 ;
v Up
org
and
5P
—z _ 1 g’
P T ov' Up ot (12)

The changes in kinetic energy and total impulse of the organized cell are
due both to changes in the velocity of the center U and to changes in

the total volume 9. Thus

8T

_org _ % ,8 (13)
T ” U
org
and
op
z _ S BU
P S vt (14)

We take the change in velocity of the cell center to be given by equations

(14) and (12) and find that there is a net loss of kinetic energy from the



organized flow given by

© T
Toss _ _ 8, 2 go'
T = 7 +v|n Up ot (15)
org
where
. 1 1 n + 15
v T vyt T VT T (Bn +13)(3n + 9) (26)

Equation (15) remains quite accurate even if n is allowed to change with
time. Since p' and U have the same sign, we see that the volume must
alvays increase rapidly enough to ensure that the right-hand side of equa-
tion (15) is negative. If we further suppose that kinetic energy is
systematically lost from the organized motion through some process like
turbulent viscosity then the volume of the cell must increase more rap&dly.
Turner has found empirically that the rate of increase of the volume

of a convective cell obeys the equation

% = o Lsto® |ul - (17)

where O is a positive constant in the range 0.25 to 0.333. The relatively
rapid increase in the volume of the organized cell given by eqﬁation (17)
results in mixing substantial amounts of ambient matter with the cell. This
process is called entrainment and brings about both a drag effect and a
cooling effect. We now use equations (12), (14), and (17) to obtain the

equation of motion for the center of the cell:

au _ . gp' 3a|U

at = v'p b v ‘ (18)

Iet the depth of the center of the cell below an arbitrary zero point in

the atmosphere be z. Equation (18) with 2z as the independent variable



is

au _ gpl | §glgl (19)
dz =~ v'p b

b) The Heat Content of a Convective Cell

We assume in this section that the heat capacity, the opacity, the
adiabatic, and the true temperature gradients are constant and examine
the total entropy of a convective cell p¥S. Although the‘assﬁmption of
constant physical parsmeters is not valid in the layers just below the
photosphere, it does apply in the deeper interior. This assumption is
made in the usual mixing length theory so that the results of this study
can be compared directly to the usual results. In addition we assume that
all fluctuations in the thermodynamic quantities are confined to the portion
of the cell where r < b. Also we make the approximation that the flow is
subsoniec and assume that the pressure fluctuations implied by tﬁe changing
velocities discussed in § IITa do not influence the density or heat content.
The rate of change of the entropy of the cell is

pCyr

=t (8) = - —— qT' +pS

ar

0 dat (20)

where q is the cooling rate of the cell, Cp is the specific heat at

constant pressure and S, is the average entropy density of the surrounding

0
matter. The final term in equation (20) is simply a result of the fact
that the entropy of the material added to the cell by entrainment is not
zero. If the cell is optically thin, q is the Newtonian cooling rate while
if the cell is optically thick then the heat equation must reduce to an

approximate form of the diffusion approximation. Following standard mixing



length theory practice (Henyey, Vardya, and Bodenheimer 1965) we take q

to be given by the interpolation formula

35
" 16 ouT : (21)

Cp [1+ hyg (pxb)el

where y 1s the opacity per gram and y is the shape factor discussed by
Henyey et al. (1965) relating the temperature gradient at the edge of the
cell to the average temperature fluctuation.

Equation (20) can be put in a more usual form by writing the time rate
of change of the entropy in terms of the changes in temperature and pressure,
and by subtracting the average temperature gradient from both sides.

Finally, we note that because of the subsonic velocities the difference
S - SO at each level is to be taken at constant pressure. The heat equa-
tion is now

ar' T

L] 1
& = g% -a T - =

T > ; (22)

In equation (22) the variables V and vad are respectively the true and
adiabatic logérithmic derivatives of the temperature with respect to pressure.
The variable H is the pressure scale height and equation (17) has been used
for (ay/dat)/y. Equations (19) and (22) combine to show that the ratio T'/U
is constant proﬁided that p'/p can be replaced with - QT'/T.

Define the following parameters

L

<
I
N
B
a—
N

g v
B = % (23)
g
03
1 F= - -
v o= (V'Vad+B) B

10



The variable V' in the absence of entrainment would be the gradient as the

cell moves as discussed by Bohm-Vitense (1958). The constant value of

T'/U is then
T T \2
T o= =m=(v-9) (24)
g -
and equations (19) and (22) become
H dU 30| UIH
— = = (v-v') (25)
dz b
g -
H aT' 30|U|H %
1 o 1 )
Fa = ~W-9)+ v (v-v') . (28)

Equations (25) and (24) or (26) define the behavior of U and T' with z
vhen b(z) is known. Note that the process of entrainment reduces both U

and T' to the same fraction of their values without entrainment.

¢) The Mass of an Organized Cell

The fundamental uncertainties of this theory are the mass of a typical
cell and the ?ariation of the mass of a single cell during its motion. At
present only partial answers can be provided for these uncertainties. In
this section we discuss and amplify Turner's (1963) empirical model for the
‘mass of a convective cell. This model contains no way of choosing the
average size of a cell. In a subsequent paper we shall discuss instabilities
~in these cells which may limit their size.

Turner's convective cell model states that matfer is added to the
organized mqtion by the process of entrainment and removed by a process of

surface erosion or attrition caused by the ambient smaller scale turbulence.

11



The effect of this turbulence on the cell can be represented by a disorde;

front moving into the cell with the ambient rms velocity, V

o’ The mass m

of the organized cell thus obeys

dm
at

= lmb2 poalU[ - hﬂbeav‘o (27)
wvhere p and po are the densities inside and outside the cell
respectively. Equation (27) can be written in terms of b when the
density p is known as a function of time. Equation (26) can be used to

define a polytropic exponent T referring to the matter within the cell

by
1 (8 1o p) (B 1o D)
L (gdem e = (§52%3) - v (28)
70 log P cell log P - c
and
30| U H 3
v, = V' + O;b (v - v') . (29)
24
We obtain
-@-—a-‘iglu --\—rg- > (30)
dz p U U 57CH !

For small density fluctuations equation (30) can be further simplified by

using -
o 3
0O = + EL = - QHLY_:;ZLl_ :
5 » 1+ ¢ T - 1 - (31)
8
and by defining
_J;- _ B log P - Qvg (32)
7e ~ Yo log P T i

12



Equation (30) is then

Vv
a _ _Ju o b
i U T E (3‘7_’)

It should be-emphasized here that although the attrition process changes
the size of the organized cell, it does not alter the internal momentum
density and temperature since the matter removed has the properties of
the interior. The final term in equation (33) is of special interest since
it introduces the ratio of cell radius to pressure scale height and implies

that rising and falling cells behave differently.

IV. THE ENSEMBLE AVERAGE

L
We now relate V, to the rms velocity (U2)2 of an ensemble of
convective cells. As long as the turbulent energy spectrum is reasonably
smooth and the scale of the random elements producing attrition does not

greatly differ from the scale of the convective cells, we can write

1
v, = B(F)° (3k)

1
: . 2
where B is a number of order unity. To obtain (U2) we exemine & large

area A at depth 26 and time to. This area will be occupied by slices of

cells whose centers are various distances from z Let { be the distance

0.
‘below 24 of a cell center. The area d2A occupied by the portions of those

cells whose centers originated between the depths z. + { + d{ and the times

XL
_ tl and tl + dtl, and whose centers are observed at depth Zg + € at time to

is

a®A = GAx (b2-§2)d§dtl (35)

where G is the number of convective cell centers generated per unit time

13



per unit volume. The radius b and velocity U are functions of Z4 and

zq alone, hence we can immediately integrate over {. Also we write dtl

as dz, /U to obtain

3
A _ . Lxb
= = 6 Edmy : (36)

The generation rate G 1is determined by the condition I dA = A where the

integration is over all cells which can contribute to the area at Zye We
now define the ensemble average as
% max
() = [ wif az (37)
’min
where
3
b
w w[oT (38)
and
zmax b3
N = ZI Tﬁszl . (39)
min

The convective flux %c is similarly defined as the ensemble average

- DCP{UI"). By virtue of equation (24) we have

3
pC,T(V -~ v')°
5 = —— (&) : (10)
g

An additional condition which must be satisfied in a steady state is

( =0 . (k1)

The meaning of this ensemble averaging procedure is that all space in

an unstable region is filled with convective cells in various stages of

1L



development. It must be emphasized, however, that ﬂithin this ensemble
are slow moving regions composed of fragments of previbﬁs cells. These
regions represent new cells in the process of formation and contain little
or no internal organization. These proto-cells provide a buffer region

between fully formed rising and falling cells.

V. THE TYPICAL PROTO-CELL

In this model when a cell is formed it consists of fragments of previous
cells. These fragments are part of the velocity field leading to attrition
and have an rms velocity of VO. A proto-cell congisting of N of these
fragments will typically have an initial velocity of

N :
Uy = iVO/Na . (42)

Iet the average size of a fragment bf be related to the initial cell size
by '

b = € bo ' . (1“5)

The number of fragments forming a proto-cell is then N = (bo/bf)3 where b
is the typical proto-cell radius. The average proto-cell therefore has a

velocity Ub given by
U. = £V ¢ _ . (44)

The condition in equation (41) and the differing behavior for rising
~ and falling cells implied by equation (33) requires that there must be a

systematic difference between the radius of rising proto-cells and falling

15



proto-cells. Ve let bo be given by

U :
0
bo = a.H(1+T——I-U0 (,) (45)
where { is to be determined by applying equation (41) and a is a factor

corresponding to the ratio of mixing length to pressure scale height.:

VI. NUMERICAL SOLUTIONS

The numerical solutions to the pair of equations (25) and (33) are

* * *
conveniently given in terms of the dimensionless variables z , b , and U

defined by
" z -z
® aH
¥ =B
b = oo (46)
i o= Y

7k
av (v - v')2
g( v')

*
where Zq is the depth at which the cell originates. The variables U0 3
* *
Vo » and by are similarly defined. Equations (25) and (33) are then

after dropping the stars

auv SQIU[

= = 1-= (47)
and

@ _ 1 )

& = g @ul-v)) - (48)
vhere

a
X = 33'-; . (h-g)

16



The boundary conditions are given by equation (L4) and

U
b, = 1+ﬁ%g . (50)

In this system the averages (02) and (U) determine the solution but are
also functions of the solution. Consequently; they must be adjusted in
an iterative procedure to give self-consistent solutions. The parameter
X can assume a variety of values dependent on the value of a and the
physical characteristics of the atmosphere under investigation.

This model of convection involves the parameters o, B, and €. Turner's
experiments establish that @ ~ 0.25-0.35. The parameter ¢ is the ratio of
average fragment radius to average cell radius and must be roughly 0.2-0.5.
The parameter P is related to € through the turbulent energy spectrum.

Let the average kinetic energy, E(k), associated with wave number k be
given by

IE(k) e XM . (51)

We then have

B = M2 y (52)

From the theory of isotropic turbulence it is known that near the energy
containing peak of the turbulent spectrum, p is between 1 and -5/3 (Hinze
1959, p. 189).
3

The important properties of the solutions are €, (Ug) 3 B (the
dimensionless distance a cell moves before disappearing). These properites
are given in Table 1 for various values of o, {, and p. The mean square
velocity is particularly important since it relates the convective flux

te the physical properties by

F, = (02) é.gpcPTvg (v - v’)% ; (52)

17



Finally, Figures 3 and 4 show b, U, and wU2 as functions of 2z for two
cases.

For certain combinations of the parameters the system of equations
has no solution. When the parameter X is too large, the sufface erosion
cannot keep up with the expansion of the fising cells and they increase in
size without limit. In reality there must be some internal instability
which leads to the disintegration of these cells after they have moved a
certain distance. We therefore regard the lack of a solufion as an indica-
tion that the theory is not wvalid for that particular combination of para-
meters.

The results of this theory are quite similar to the results of the
Bohm-Vitense (B-V) theory. In equation (52) the factor {Ue) replaces the
factor 0.5 of the B-V theory. We also have shown that v is between 1.5 and
2.2. By virtue of equation (24) it is clear that the convective flux must
be related to (U2) rather than (|U|)2 as is the case in the B-V theory.
Consequently, the turbulent Pressure is very closely related to the convec-
tive flux and the factor p of the B-V theory must be unity. More important,
however, is the fact that this theory provides detailed information about
the relative contribution to the convective flux as a function of the
distance between the point where a cell originates and the point where it
is observed. This contribution function is wif and is shown in Figures 3 and L.
In the calculation of the convective flux in-a'realistic atmosphere where
the physical properties change rapidly, this function must be known.

I would like to thank Professor L. G. Henyey for his encouragement and
guidance during the early phases of this work, Professor R. F. Christy for
several helpful suggestions concerning the manuscript, and Dr. D. W. Moore

for pointing out the recent work by Turner.
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TABLE 1
CHARACTERISTICS OF CONVECTIVE CELL SOLUTIONS

——————

i
2
T A ¢ el el
upward downward

motion motion
0.25 0.4 0.5 0.00 0.2619 0.2083 0.0000 1.68 1.68
0.16 0.2835 0.2096 0.,0427 1.92 1.48
0.32 0.2680 0.2131 0.0857 2.24 1.32
0.25 0.4 0.0 0.00 0.2367 0.2367 0.0000 2.18 2.18
0.16 0.2385 0.2385 0.0574 2.61 1.87
0.32 0.2432 0.2432 0.1158 3.95 1.63
0.25 0.4, -0.25 0.00 0,2258 0.2532 0.0000 2.53 2.53
0.16 0.2276 0.2552 0.0875 3.12 2.11
0.32 0.2323 0.2605 0.1365 L, ok 1.8k
0.25 o.k -0.5 0.00 0.2165 0.2721  0.0000 2.92 2.92
0.16 0.2182 0.2742 0.0799 3.76 2.40
0.32 0.2224 0.2796 0.1575  5.16 2.0k
0.25 0.4 -1.66 0.00 0.1883% 0.4029 0.0000 6.57 6.57

0.16 no solution

0.32 no solution
0.25 0.2 0.0 0.00 0.1698 0.1698 0.0000 3.00 3.00
0.16 0.17068 0.1706 0.0888 3,87 2.h2

0.32 no solution
0,333 0.4 0.0 0.00 0.2339 0.2339 0.0000 2.21 2,93

0.16 0.2350 0.2350  0.0632 2.65 1.89

0.32 0.2376 0.2376 0.1275 3.28 1.68
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3.

FIGURE CAPTIONS

Streamlines relative to the center of the cell for n = 2.

i

Streamlinres relative to the center of the cell for n = 8.

wU2, b, and IU[ as functions of Az for convective cell
solutions when & = 0.25, € = 0.4, p = -0.5. Values of X

for all the functions are labeled on wU2.

wU2, b, and |U[ as functions of Az for convective cell
solutions when ¢ = 0.25, € = 0.4, p = 0.0. Values of X

for all the functions are labeled on er.
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