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ABSTRACT 

The motion in a convectively unstable region is expanded 

into an ensemble of convective cells. Each of these cells 

interacts with the surrounding medium according to the semi- 

empirical model proposed by Turner (1963 ). Possible detailed 

models of the flow patterns within each cell are presented. 

The radius and velocity of these cells are given as functions 

of distance moved. The convective flux and rms velocity are 

given as averages over the ensemble of cells. As in the 

standard mixing length theory the principle uncertainty re- 

mains the average initial radius of the cells. 
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, - I  Many problems i n  astrophysics require the  knowledge of convective*' . 

energy fluxes and convective velocities.  A t  present a l l  applied theoret- 

i c a l  treatments of such problems make use of the  mixing length theory. 

This type of theory was f i r s t  proposed by Prandtl (1932) for  use i n  

t rea t ing  meteorological convection. Siedentopf (1933a ,b, 1935) and 

Biermann (1937, 1942) then applied the  mixing length theory t o  the  study 

of s t e l l a r  atmospheres and inter iors .  Important improvements were l a t e r  

added t o  th5s theory by Vitense (1953) and Shm-Vitense (1958). This l a s t  

work gives the  mixing length theory as  i s  used i n  most recent studies of 

s t e l l a r  in t e r io r s  and atmospheres. 

In  contrast, most theoret ical  descriptions of convection s t a r t  from 

a modal analysis of the  equations of motion. In  principle t h i s  approach 

requires t h a t  the  l inearized equations of motion be solved as an eigenvalue 

problem. The resul t ing eigenmodes must then be coupled through the  non- 

l inea r  terms i n  the  equation of motion [ (1 grad) - v and (v -  grad)^' 1, some 

form of s t a t i s t i c a l  cloture approximation must be applied and f i n a l l y  the  

average amplitudes derived t o  give the convective flux. Sone progress has 

been made on individual par t s  of t h i s  progrmj however, the  varying degree 

. o f  approximation used i n  the different  par t s  renders the resul t s  incompat- 

ible .  %hm (1963a,b) has carried out the first stage of the  calculation 

with very few approximations, but made no attempt at  the remaining stages. 

In fac t ,  it i s  doubtful tha t  the  subsequent steps can be carried out a t  a l l ,  

since it has never been shown tha t  Bzhra's fourth order d i f f e ren t i a l  operator 

i s  self-adjoint. If, as Spiegel (1965) has indicated, this operator i s  not 

self-adjoint,  then the  prospects f o r  coupling the non-orthogonal modes a re  

not good, 



There have been numerous procedures suggested for mode coupling and 

averaging: Ledoux, Schwarzschild, and Spiegel (1961) used Heisenberg (1948) 

turbulent; viscosity, Unno (1961) adjusted the turbulent viscosity to set 

the Reynolds number to 30, Kraichnan (1959a,b, 1964, 1965) used the direct 

interaction approfimation, Edwards (1964) used the random phase approxima- 

tion, and Herring (1965) used the self-consistent field approximation. None 

of these treatments used realistic normal modes and all depended strongly 

on the simple properties of the Fourrier modes. 

In view of the limitations on the applicability of the modal analysis 

theories and the desirability of a theory with the simplicity of the mixing 

length theory, we shall adopt in this paper a model of the convective motion 

which is closely akin to the mixing length model. We shall expand the' 

motion into an ensemble of convective cells and follow the history of an 

individual cell with the full non-linear equations of motion. The convec- 

tive velocity and flux is then given by an average wer this ensemble. In 

the present work we leave the average initial radius of these cells as an 

unspecified parameter. The description of the behavior of these cells 

includes the interaction between the cells and their environment according 

to the semi-empirical model proposed by Turner (1963). Turner's model 

involves a tendency for the mass of the convective cell to increase by the 

entrainment of surrounding matter into the organized cell and a tendency 

for the mass of the cell to decrease by a process of surface errosion due 

to randon thrusts of matter from the surrowlding turbulent medium into the 

organized flow patterns of the cell. This model thus proposes a superposi- 

tion of organized cellular motion on a smdler scale, randoa turbulent 

velocity field. Sections 11, IIIa, and IIIb examine the properties of the 

organized cells while 55 IIIc, IV, and V examine some aspects of the 



interrelation of these velocity fields. 

11. THE ORCrPLNIZED INTERNAL MOTION OF A CONVECTIVE CELL 

A rising cell of hot gas in the earth's atmosphere is known as a 

convective thermal. Morton, Taylor, and Turner (1956) have described the 

large scale behavior of these convective cells by using the concept of 

entrainment, whereby some of the surrounding undisturbed matter is swept 

into the cell and mixed with the matter inside. This convective thermal 

model tms applied by Turner (1963) to the motion of convective cells in 

turbulent surroundings. He tested his theory through experiments with salt 

solution convective cells in turbulent pure water and found good agreement. 

He (~urner 1964a,b) then added some detail to the model by assuming that 

the internal motion of the cell could be represented by a Hi11 spherical 

vortex (Hill 1894; Lamb 1932, Art. 165). 

A true convective thermal is produced by the sudden appearance of a 

small but strong density fluctuation. In a stellar atmosphere there is no 

source of such strong density fluctuations and a convective cell must be 

initiated by the chance association of several small fragm5nts which have 

a net vertical momentum. This vertical motion then produces a small density 

fluctuation ovek the entire moving region. This region initially moves as 

a unit with little organized internal motion. Consequently, Wner's de- 

tailed model probably does not accurately represent the motion within a 

stellar convective cell at all stages of its development. We examine belox 

a family of spherical vorticies which contains as special cases Hill's vortex 

m d  a uniformly moving spherical region with no internal motion. 

We measure velocities with respect to a stationary coordinate system, 

but proJectthese velocities onto a spherical coordinate system modng with 



the convective cell .  We take the z axis of the system t o  be i n  the vert ical  

direction measured positive inwwd. Let U be the velocity of the center of 

the c e l l  and b be Its radius. For an axially s ~ e t r i c  flow there always 

exis ts  a stream function 9 which we take t o  define the vorticies by 

2 9 = - - U  b s i n e  
2 r for r > b 

Velocities i n  a spherical coordinate system are related t o  the stream 

I. function by 

vr 
= r 

2 
r sin 0 

- 
V~ - r sin Q a;I 

The velocities for  this family of vortices are 

and 

ub3 v = -  
r 3 cos 0 

r 

v0 = - ub3 s in  8 3 2r I for  r > b  



When n = 2 the vortex is Just EUll's vortex which moves at constant velocity 

when bouyancy forces are absent. In the limit n -* co, the velocity for 

r < b just becomes t$ where 6 is the unit vector in the vertical direction. 

In this limit there is a discontinuity in ve at r = b. 

These vortices change with time unless n = 2 and curl (g P '  2) =. 0 

where P '  and g are the density fluctuation and acceleration of gravity 

respectively. When there is a discontinuity or sharp gradient in P' near 

the edge of the convective cell then curl (g p' z^)  a g P: sin Q b(r - b) $ 

where P b  is the relatively smooth interior value of P '  and 6 is the unit 
vector in the azmuthal direction. There is thus a tendency to produce 

vorticity w near the boundary of the convective cell. The velocities in 
9 

equations (5) give 

n-1 
w - z ( n + 3 ) C  
9 - 2 

sin 8 
bn 

which in the limit of large n is primarily confined to the region just 

inside of r = b and matches the 8 dependence of curl (g P '  6). 

The buoyancy forces continually tend to produce a vortex with a large 

n while the inertial forces tend to produce a vortex with n = 2. The 

precise result of these competing tendencies cannot be obtained without a 

detailed solution of the equations of motion; however, n can reasonably be 

expected to be somewhat greater than 2. 

The nature of these vortices is most clearly illustrated by plotting 

lines of constant Jr for velocities measured with respect to the center of 

the cell. Figures 1 and 2 show these streamlines for the cases n = 2 and 8. 

2 In each case the interval in \Ir between successive streamlines tras 0.045Ub . 
The density of streamlines indicates the velocity of flow re3 'l've to the 



center of the c e l l  and the motion of an individual par t ic le  of f lu id  i s  

along the' streamline. 

111. THE INTEGRATED PROPERTIES 

a )  Kinetic Energy and Vertical Impulse 

The t o t a l  kinet ic  energy associated with the organized motion of a 

single convective c e l l  of the type discussed above i s  simply %he integral. 

2 over a l l  space of the kinet ic  energy density 4 P lvl . The appropriate 

veloci t ies  a re  those given i n  equations (4)  and (5). Let the t o t a l  kinet ic  

energy associated with the organized c e l l  be T and the volume inside 
0% 

r = b be 1/. The in tegra l  of the kinet ic  energy density gives E 
C 

with 

Some care i s  necessary i n  discussing the t o t a l  ver t ica l  impulse since 

the  surface integral  of the pressure fluctuation does not vanish a s  r + m a  

Since the  velocity fo r  r > b i s  derivable from a velocity potential ,  the 

t o t a l  ve r t i ca l  momentum between any pair  of concentric spheres must vanish 

by Gauss' theorem. Thus we need only examine the  momentum fo r  r < b and 

the pressure fluctuations on the  surface r = b. Note tha t  the presence of 

these pressure fluctuations requires t h a t  we use the concept of impulse 

rather  than momentum alone. The flow for  r > b i s  the same as  the flow 

around a sol id sphere moving i n  an inviscid incompressible fluid. There- 

fore the  pressure reactance must add 0.5 PpU t o  the t o t a l  ver t ica l  impulse 

jus t  a s  i n  t h i s  simpler problem (kmb 1932, Art. 92). We now determine 



t h e  t o t a l  ve r t i ca l  impulse PZ associated with a single convective c e l l  by 

integrating the ver t ica l  mmentum density pvZ over the region r < b and 

adding 0.5 @dJ. We obtain 

with 

In  a time 6 t  the  changes i n  the t o t a l  kinet ic  energy 6Ttotal and 

t o t a l  ve r t i ca l  impulse are jus t  due t o  the  t o t a l  bouyancy force 2rgP'. 

We have then 

6Tt ota l  2 Kgt 
Torg 

= 7 UP 

and 

The changes i n  kinet ic  enerm and t o t a l  impulse of the organized c e l l  are  

due both t o  changes i n  the velocity of the center U and t o  changes i n  

the  t o t a l  volume V.  Thus 

and 

We take the change i n  velocity of the c e l l  center t o  be given by equa.tions 

(14) and (E?) and f ind tha t  there i s  a net loss  of kinet ic  energy from the 



organized flow given by 

where 

Equation (15) remains quite accurate even i f  n i s  allowed t o  change with 

time. Since P '  and U have the same sign, we see that  the volume must 

always increase rapidly enough t o  ensure that  the right-hand side of equa- 

tion (15) i s  negative. If we further suppose that  kinetic energy i s  

systematically l o s t  from the organized motion through some process l ike  

turbulent viscosity then the volume of the c e l l  must increase more rapidly. 

Turner has found empirically that  the ra te  of increase of the volume 

of a convective c e l l  obeys the equation 

where a i s  a positive constant i n  the range 0.25 t o  0.335. The relatively 

rapid increase i n  the volume of the organized ce l l  given by equation (17) 

results  i n  mixing substantial amounts of ambient natter  with the cell .  This 

process i s  called entrainment and brings about both a drag effect and a 

cooling effect. We now use equations (12), (Ilk), and (17) t o  obtain the 

equation of motion for  the center of the cell:  

Let the depth of the center of the c e l l  below an arbitrary zero point i n  

the atmosphere be z. Equation (18) with z as  the independent variable 



b) The Heat Content of a Convective Cell 

We assume i n  this section tha t  the heat capacity, the  opacity, the 

adiabatic, and the  t rue  temperature.gradients a re  constant and examine 

the  t o t a l  entropy of a convective c e l l  PL/S. Although the  assumption of 

constant physical parameters i s  not val id i n  the layers just  below the  

photosphere, it does apply i n  the  deeper inter ior .  !This assumption i s  

made i n  the usual mixing length theory so tha t  the resul t s  of this study 

can be compared d i rec t ly  t o  the  usual results.  In  addition we assume tha t  

a l l  fluctuatioas i n  the thermodynamic quantit ies a re  confined t o  the  portion 

of the  c e l l  where r < b. Also we make the  approximation tha t  the  flow i s  

subsonic and assume tha t  the  pressure fLuctuations implied by the  changing 

veloci t ies  discussed i n  5 I I I a  do not influence the density or heat content. 

The ra t e  of change of the ent row of the cell i s  

where q i s  the  cooling r a t e  of the  c e l l ,  Cp i s  the  specific heat at 

constant pressure and SO i s  the  average entropy density of the  surrounding 

matter. The f i n a l  term i n  equation (20) i s  simply a resul t  of the f ac t  

tha t  the entropy of the  r i t e r i a l  added t o  the c e l l  by entrainment i s  not 

zero. I f  the c e l l  i s  optically thin,  q i s  the  Newtonian cooling ra t e  while 

i f  the c e l l  i s  opt ical ly thick then the heat equation must reduce t o  an 

approximate form of the  diffusion approximation. Following standard mixing 



length theory practice (~enyey, Vardya, and Bodenheimer 1965) we take q 

to.be given by the interpolation formula 

where H i s  the opacity per gram anii y i s  the shape factor discussed by 

Henyey e t  al.  (1965) relating the temperature gradient a t  the edge of the 

c e l l  t o  the average temperature fluctuation. 

Equation (20) can be put i n  a more usual form by writing the time ra te  

of change of the entropy i n  t e r n  of the changes i n  temperature and pressure, 

and by subtracting the average temperature gradient from both sides. 

f inal ly,  we note tha t  because of the subsonic velocities the difference 

S - So at each level  i s  t o  be taken a t  constant pressure. The heat equa- 

t ion  i s  now 

In equation (22) the variables V and vad are respectively the true and 

adiabatic logarithmic derivatives of the temperature with respect t o  pressure. 

The variable H i s  the pressure scale height and equation (17) has been used 

for  ( ~ / d t ) / ~ .  Equations (19) and (22) combine t o  show that  the ra t io  T'/U 

i s  constant prov5ded that P'/P can be replaced with - QT'/T. 
Def'ine the following parameters 



The variable V' i n  the  absence of entrainment would be the gradient as the  

c e l l  moves as $I.scy~~e$~by Shm-Vitense (1958). The constant value of 
7 

T'/U i s  then 

and equations (19) and (22) become 

H d~ ': ~ ~ I U I H  
7-az " (v - v ' )  - 

g 
v b  

Q 

Equations (25) and (24) or  (26) define the  behavior of U and T' with z ' 

vhen b(z ) i s  known. PTote t h a t  the  process of entrainment reduces bath U 

and T' t o  the  same fract ion of t h e i r  values without entrainment. 

c )  The Mass of m Organized Cell 

The fundamental uncertainties of t h i s  theory are  the  mass of a typica l  

c e l l  and the  variat ion of the  mass of a single c e l l  during i t s  motion. A t  

present only p a r t i a l  Etnswers can be provided f o r  these uncertainties, In 

t h i s  section we discuss and ~trqplify Turner's (1963) empirical model f o r  the 

mass of a convective c e l l ,  This model contains no way of choosing the  

average s i ze  of a cel l .  In a subsequent paper we shaU d i scuss , in s t ab i l i t i e s  

i n  these c e l l s  which may l imi t  t h e i r  size. 

!Turner1 s convective c e l l  model. s t a t e s  tha t  matter i s  added t o  the 

organized motion by the  process of entrainraent and removed by a process of 

surface erosion o r  a t t r i t i o n  caused by the  ambient smaller scale turbulence. 



The effect  of this turbulence on the c e l l  can be represented by a disorder 

Aont moving in to  the c e l l  with the ambient ms velocity, Vo. The mass m 

of the organized c e l l  thus obeys 

where p and po are the densities inside and outside the c e l l  

respectively. Equation (27) can be tmitten i n  terms of b when the 

density P i s  knotrn as  a function of time. Equation (26) can be used t o  

define a polytropic exponent yc referring t o  the matter within the c e l l  

and 

Me obtain 

For small density flu.ctuations equation (30) can be f'urther simplified by 

using - 

and by defining 



Equation (30) i s  then 

It should be emphasized here tha t  although the  a t t r i t i o n  process changes 

the  s ize  of the  organized ce l l ,  it does not a l t e r  the  in terna l  momentum 

density and temperature since the  matter removed has the  properties of 

the  in ter ior .  The f i n a l  term i n  equation (33) i s  of special in t e res t  since 

it introduces the  r a t i o  of c e l l  radius t o  pressure scale height and implies 

t h a t  r i s ing  and fa l l ing  c e l l s  behave differently.  

IV. TKE ENSENBIZ AVERAGE 

We now re la t e  Vo t o  the nns velocity (9)2 of an ensemble of 

convective cel ls .  A s  long as the  turbulent energy spectrum i s  reasonably 

smooth and the scale of the random elements producing a t t r i t i o n  does not 

great ly d i f f e r  from the scale of the  convective ce l l s ,  we can write 

L - 
2 

where f3 i s  a number of order unity. ' To obtain (3) we exmine a large 

area A a t  depth zo and time to. This area M i l l  be occupied by s l i ces  of 

c e l l s  whose centers are various distances from z Let be the  distance 0' 
2 below z0 of a c e l l  center. The area d A occupied by the  portions of those 

c e l l s  whose centers originated between the depths zl + 5 + dc and the  times 

t and tl + dtl, and whose centers a re  observed at depth z0 + 5 a t  time to 
1 

i s  

where G i s  the  number of convective c e l l  centers generated per uni t  time 



per unit volume. The radius b and velocity U are functions of z0 and 

z alone, hence we can immediately integrate over 5 .  Also we write dtl 1 

as dzl/u t o  obtain 

The generation r a t e  G i s  d e t e d n e d  by the  condition l dA = A where the 

integration i s  over a l l  c e l l s  which can contribute t o  the  area a t  zO. We 

now define the  ensemble a v e r q e  as  

Z max 
(3, = J- wU2 dzl 

Z min 

where 

and 

Z, " b3 
M = 

Z S dzl. min 

The convective f lux Fc i s  similarly defined a s  the ensemble average 

- P C ~ ( U T " ) .  By vi r tue  of equation (24) we have 

An additional. condition which must be sa t i s f ied  i n  a steady s t a t e  i s  

(u) = 0 (41) 

The meaning of t h i s  ensemble averaging procedure i s  tha t  a l l  space i n  

an unstable region i s  f i l l e d  with convective c e l l s  i n  various stages of 



development. It must be emphasized, however, that  within t h i s  ensenble 

are  slow moving regions composed of fragments of previous cells.  These 

regions represent new cel ls  i n  the process of formtion and contain l i t t l e  

or no internal organization. These proto-cells provide a buffer region 

between ful ly  formed rising and fa l l ing cells. 

V. THE TYPICAL PROTO-CELL 

In this model when a c e l l  i s  formed it consists of fragments of previous 

cells.  These fragments are part of the velocity f i e ld  leading t o  a t t r i t ion  

and have an rins velocity of Vo. A proto-cell consisting of N of these 

fragments w i l l  typically have an i n i t i a l  velocity of 

L e t  the average size of a fragment bf be related t o  the initial ce l l  s ize 

The number of fragments forming a proto-cell i s  then N = (bO/bf)' where bo' 

i s  the typical proto-cell radius. The average prowto-cell therefore has a 

velocity Uo given by 

The condition i n  equation (&I) and the differing behavior fo r  r is ing 

' and TaLling ce l l s  implied by equation (33) requires that  there must be a 

systematic difference between the radius of rising proto-cells and fa l l ing 



proto-cells. We l e t  bo be given by 

where f; is  t o  be determined by applying equatfon (41) and a i s  a factor  

corresponding t o  the  r a t i o  of raixing length t o  pressure scale height: 

The numerical solutions t o  the pa i r  of equations (25) and (33) are 
* * * .  

conveniently given i n  terms of the dimensioxiLess variables z , b , and U 

defined by 

;w 
where z0 i s  the depth a t  which the ce l lo r ig ina tes .  The variables Uo , 

* -E 
Vo , and bo are  similarly defined. Equations (25) and (33) are  then 

af ter  dropping the s t a r s  

and 

where 



The boundary conditions are given by equation (44) and 

In this system the averages (u2) and (u) determine the solution but are 

also functions of the solution. Consequently, they must be adjusted in 

an iterative procedure to give self-consistent solutions. The parmeter 

X can assume a variety of values dependent on the value of a and the 

physical characteristics of the atmosphere under investigation. 

This m~del of convection involves the parmeters a, B, and E. Turner's 

experinents establish tbt a 0.25-0.35. The parameter E is the ratio of 

average fragment radius to average cell radius and must be roughly 0.2-0.5. 

The parmeter B is related to E through the turbulent enerm spectsum. 

Let the average kinetic energy, ~(k), associated with wave number k be 

given by 

~ ( k )  a k IJ (51) 

We then have 

From the theory of isotropic turbulence it is known that near the energy 

containing peak of the turbulent spectrum, p is between 1 and -5/3 (Hinze 

3 
The important properties of the solutions are 5 ,  (3) , znrsx (the 

dimensionless distance a cell moves before disappearing). These properites 

are given in Table 1 for various values of a,  (, and y. The mean square 

velocity is particularly important since it relates the convective flux 

to the physical properties by 



Finally, Mgures 3 and 4 show b, U, and w3! a s  functions of z fo r  two 

cases. 

For cer ta in  combinat5ons of the  parameters the  system of equations 

has no solution. When the  parameter x i s  too large,  the surface erosion 

c-o.1; keep up with the  expansion of the  r i s ing  c e l l s  and they increase i n  

s i z e  ~ r i thou t  limit. In  r e a l i t y  there must be some in terna l  i n s t a b i l i t y  

which leads t o  the dis integrat ion of these c e l l s  a f t e r  they have moved a 

cer ta in  distance. We therefore regard the lack of a solution as  an indica- 

t i o n  t h a t  t h e  theory i s  not va l id  f o r  that part icular  combination of para- 

meters. 

The r e su l t s  of this theory a r e  qui te  similar t o  the  r e su l t s  of the  

Shm-Vitense (B-V) theory. In  equation (52) the  fac tor  (3) replaces the  

fac tor  0.5 of t h e  B-V theory, We a l so  have shown t h a t  v i s  between 1.5 and 

2.2. By v i r tue  of equation (24) it i s  clear  t h a t  the  convective f lux must 

be re la ted  t o  ( 8 )  rather  than ( 1 uI)* a s  i s  the  case i n  the  B-V theory. 

Consequently, the  turbulent pressure i s  very closely related t o  the  convec- 

t i v e  flux and the  factor  p of the  B-V theory must be unity. More important, 

however, i s  the  f ac t  t h a t  t h i s  theory provides detailed infomation about 

the  r e l a t ive  contribution t o  the  convective f l u  a s  a function of the  

distance between the  point where a c e l l  originates and the  point where it 

is observed. This contribution function i s  w 8  and i s  shown i n  Figures 3 and 4. 

In  the  calculation of the convective f lux  i n  a r e a l i s t i c  atmosphere where 

the  physical properties change rapidly, this function must be known. 

I would l i k e  t o  thank Professor L. G. Henyey f o r  h i s  encouragement and 

guidance during the  ear ly  phases of t h i s  work, Professor R. F. Christy f o r  

several helpful  suggestions concerning the manuscript, and Dr .  D. W. Moore 

f o r  pointing out the recent work by Turner. 



TABLE 1 

CHARACTERISTICS OF COMrECTNE CEU SOLUTIONS 

upward downward 
motion motion 

0.00 0.1883 0.4029 0.0000 6.57 

0.16 no solution 

0.32 no solution 

0.00 0.1698 0.1698 0.0000 3.00 

0.16 0.1706 0.1706 0.0688 3.87 

0.32 no solution 
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FIGURE CAFTIONS 

Fig. 1. Streamlines re la t ive  t o  the center of the c e l l  fo r  n = 2. 

Fig. 2. Streamlines re la t ive  t o  the center o f t h e  c e l l  fo r  n = 8. 

- 
Fig. 3. wl?, b, and I u I  as  f'unctions of Az f o r  convective c e l l  

solutions when a = 0.25, c = 0.4, p = -0.5. Values of X 

for  aU the  f'unctions are labeled on wl?. 

Rig. 4. w$, b, and I U I  as  functions of h fo r  convective c e l l  

solutions when a = 0.25, r = 0.4, p = 0.0. Values of x 

f o r  a l l  the functions are  l a b a e d  on vl?. 
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